文章标题:人工智能(AI)在医疗保健中的应用:综述 作者:Mohammed Yousef Shaheen[1] 所属机构:沙特阿拉伯[1] Orcid ids:0000-0002-2993-2632[1] 联系电子邮件:yiroyo1235@tmednews.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品即可。使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行开放同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVRY8K.v1 预印本首次在线发布:2021 年 9 月 25 日
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
需要开发适应不断变化的生产情景的植物品种,特别是在气候变化的情况下,这要求作物满足日益复杂和多样化的需求,这对育种者来说是一个巨大的挑战。在此背景下,追求赋予所需作物特性和适应性的性状组合比以往任何时候都更加重要,因此有必要加强多标准或多性状育种(Moeinizade 等人,2020 年)。利用分布在基因组中的完整核苷酸多样性来预测数量性状的育种值(基因组预测,GP,Meuwissen 等人,2001 年)已证明其在育种计划中的有效性。事实证明,这种方法有助于提高遗传增益率并降低成本(Hickey 等人,2017 年)。然而,为了应对气候变化和更明确的环境目标种群(Chapman 等人,2000 年),对多环境(ME)育种的需求日益增长,这需要采用基因组预测方法来解释基因型和环境(GxE)之间相互作用的出现(Rincent 等人,2017 年)。先前的研究试图在基因组选择(GS)中解决 GxE。例如,Burgueño 等人(2012) 开发了多环境统计模型。然而,这些模型仅考虑线性和非因果环境效应,从而降低了预测准确性的可能增益,尤其是对于复杂的综合性状或与校准集有显着差异的环境(Rogers and Holland,2022)。Heslot 等人。另一方面,(2014 年)使用作物生长模型 (CGM) 来推导环境协变量。与标准 GS 模型相比,在 GS 框架内加入环境协变量可提高预测准确性并降低未观察环境中的预测变异性。整合作物模型以解决 GxE,如 Heslot 等人的研究所示。(2014) ,强调了这种方法在所述育种环境中的实用性。尽管如此,考虑大量协变量会显著增加问题的复杂性,使得建模变得极具挑战性(Larkin 等人,2019 年)。
(过去 10 年) 注:- 具有教学能力的经验丰富候选人优先。 本次面试同时面向 CSB 卡持有者和非 CSB 卡持有者。 从今以后,通过 OST 不是参加面试的强制性要求。 但是在选拔职位之后,候选人必须通过 OST,详情如下: 普通候选人:在被任命的两年内,总原始分数至少为 50%(100 分) 只有入围的候选人才会被邀请参加面试。 薪水优厚。 可以从 Jorhat 陆军公立学校领取申请表,也可以从网站 www.apsjorhat.org 下载,通过以 APS Jorhat 为收款人的汇票支付 250 卢比。申请表须连同所有推荐书一起填写完整。获得 CSB 资格的考生必须在 2025 年 1 月 13 日或之前直接向陆军公立学校、Jorhat、Charaibahi 军事站、PO-Charaibari、Dist – Jorhat (Assam)、PIN – 785616 提交 CSB 成绩卡的副本。
摘要:人们越来越认识到人工智能 (AI) 的政治、社会、经济和战略影响的重要性。这引发了有关人工智能编程、使用和监管的重要伦理问题。本文认为,人工智能的编程和应用本质上都是 (顺) 性别化、性化和种族化的。毕竟,人工智能是由人类编程的,因此,谁来训练人工智能、教它学习以及这样做的伦理问题对于避免 (顺) 性别化和种族主义刻板印象的重现至关重要。本文的实证重点是欧盟资助的 iBorderCtrl 项目,该项目旨在通过实施多种基于人工智能的技术(包括面部识别和欺骗检测)来管理安全风险并提高第三国国民的过境速度。本文汇集了 1) 风险与安全 2) 人工智能与道德/移民/庇护以及 3) 种族、性别、(不)安全与人工智能等领域的文献,探讨了谎言检测对常规过境和难民保护的影响,概念重点关注性别、性取向和种族的交叉点。我们在此认为,iBorderCtrl 等人工智能边境技术存在重大风险,不仅会进一步边缘化和歧视 LGBT 人士、有色人种和寻求庇护者,还会强化现有的非入境做法和政策。
在量子计算机上可验证的较低复杂度。然而,量子电路 (QC) 的 QIP 体现仍不清楚,更不用说对 QIP 电路的 (彻底) 评估,特别是在 NISQ 时代的实际环境中,通过混合量子经典管道将 QIP 应用于 ML。在本文中,我们从头开始精心设计 QIP 电路,其复杂性与理论复杂性一致。为了使模拟在经典计算机上易于处理,特别是当它集成在基于梯度的混合 ML 管道中时,我们进一步设计了一种高效的模拟方案,直接模拟输出状态。实验表明,与之前的电路模拟器相比,该方案将模拟速度提高了 68k 倍以上。这使我们能够对典型的机器学习任务进行实证评估,从通过神经网络的监督和自监督学习到 K 均值聚类。结果表明,在量子比特足够的情况下,典型量子机制带来的计算误差一般不会对最终的数值结果产生太大影响。然而,某些任务(例如 K-Means 中的排序)可能对量子噪声更加敏感。
我们将提供空间供您展示您的产品。如有任何疑问或想安排会议,请随时通过 pjbinu@cdac.in 与我们联系,Binu PJ,组织秘书,科学家 E/联合主任,CDAC Trivandrum 健康技术组,电话:9496236198。
本研究基于定量和定性分析方法构建的方法论框架,遵循 Pickering 和 Byrne (2014) 提出的步骤,进行系统的文献综述和文献收集设计,重点分析人工智能 (AI) 时代高等教育的想象未来。我们的研究旨在回答以下研究问题:(1)人工智能时代高等教育的想象未来是什么?(2)哪些因素影响高等教育教学过程与人工智能之间的联系?(3)学生和教师改进数据库和开发 ChatGPT 会产生什么影响?作者探讨了人工智能在西方世界当前大学治理安排和精神背景下的影响。深入分析与人工智能系统的出现相关的一些已确定的主要挑战、机遇和风险相一致,例如技术监控或学术界对人工智能和大型语言模型(如 ChatGPT)的普遍访问,并提出了在高等教育中明智地选择和使用人工智能解决方案进行学习和教学的论据。本研究采用的分析框架还用于总结该领域研究的新方向,以恢复大学的主导地位,提高学生、学者和公众的高等教育质量。
摘要简介:遗传性载脂蛋白 A-I (AApoAI) 淀粉样变性是一种罕见的异质性疾病,发病年龄和器官受累各不相同。很少有系列文章详细介绍了一系列致病性 APOA1 基因突变的实体器官移植的自然史和结果。方法:我们确定了 1986 年至 2019 年期间在国家淀粉样变性中心 (NAC) 就诊的所有 AApoAI 淀粉样变性患者。结果:总共确定了 57 名患有 14 种不同 APOA1 突变的患者,包括 18 名接受肾移植的患者(5 例肝肾联合 (LKT) 移植和 2 例心肾联合 (HKT) 移植)。发病年龄中位数为 43 岁,从发病到转诊的中位数时间为 3(0 – 31 年)。81%、67% 和 28% 的患者检测到淀粉样蛋白累及肾脏、肝脏和心脏。肾淀粉样变性普遍与最常见的变异 (Gly26Arg, n ¼ 28) 有关。在所有变异中,肾淀粉样变性患者在诊断为 AApoAI 淀粉样变性时肌酐中位数为 159 m mol/L,尿蛋白中位数为 0.3 g/24 h,从诊断到终末期肾病的中位时间为 15.0 (95% CI: 10.0 – 20.0) 年。肾移植后,同种异体移植的中位生存期为 22.0 (13.0 – 31.0) 年。移植后有一例患者早期死亡(肾移植后 2 个月感染相关),未发生导致移植失败的早期排斥反应。在所有四例接受连续 123 I-SAP 闪烁显像的病例中,肝移植均导致淀粉样蛋白消退。结论:AApoAI 淀粉样变性是一种进展缓慢、难以诊断的疾病。移植结果令人鼓舞,移植物存活率极高。
关于气候与能源的市长盟约(GCOM)是城市气候领导力最大的全球联盟,与13,000多个城市和地方政府和100多个支持伙伴组成的全球联盟结合了全球联盟。GCOM的城市和合作伙伴具有支持自愿行动以打击气候变化以及朝着韧性和低排放社会的长期愿景。GCOM通过与城市/地区/地区网络,国家政府和其他合作伙伴合作来实现我们的愿景,通过动员和支持其社区中雄心勃勃,可衡量,计划的气候和能源行动来为城市和地方政府提供服务。联盟包括6大洲和144个国家的城市,占全球人口的10亿以上人口。
