芝加哥大学数据与计算中心正在寻求希望加深对前沿数据科学和计算研究的了解,同时在特定应用问题领域发展更多专业知识的博士后学者。数据与计算中心 (CDAC) 是芝加哥大学数据科学研究的智力中心和孵化器。我们与芝加哥大学计算机科学系位于同一地点,通过在实际应用的背景下探索新的数据和计算方法、基础和平台来促进发现。这个独特的项目为博士后提供了对数据科学中重要问题进行原创研究的机会,同时还可以在一个或多个互补领域(如行为科学、医疗保健和公共政策)发展专业领域的专业知识。该项目利用芝加哥大学排名靠前的课程、世界知名的教师以及充满活力且快速扩张的数据科学生态系统,将使博士后学者能够参与定义领域的数据科学和人工智能研究。我们的职位提供有竞争力的薪水、丰厚的研究经费津贴和福利。项目优势:
对比语言图像预训练 (CLIP) 编码器已被证明对从分类和检测到字幕和图像处理等一系列视觉任务有益。我们研究了 CLIP 视觉主干对 Embodied AI 任务的有效性。我们构建了非常简单的基线,称为 EmbCLIP,没有任务特定的架构、归纳偏差(例如使用语义图)、训练期间的辅助任务或深度图——但我们发现我们改进的基线在一系列任务和模拟器中表现非常出色。EmbCLIP 在 RoboTHOR ObjectNav 排行榜上以 20 分(成功率)的巨大优势名列前茅。它在 iTHOR 1-Phase Rearrangement 排行榜上名列前茅,击败了采用主动神经映射的第二佳提交作品,并且 % Fixed Strict 指标增加了一倍多(0.08 到 0.17)。它还击败了 2021 年 Habitat ObjectNav 挑战赛的获胜者,该挑战赛采用了辅助任务、深度图和人工演示,以及 2019 年 Habitat PointNav 挑战赛的获胜者。我们评估了 CLIP 的视觉表示在捕获输入观察的语义信息方面的能力——这些原语对于导航繁重的具身任务很有用——并发现 CLIP 的表示比 ImageNet 预训练的主干更有效地编码了这些原语。最后,我们扩展了我们的一个基线,生成了一个能够进行零样本物体导航的代理,它可以导航到训练期间未用作目标的物体。我们的代码和模型可以在 https://github.com/allenai/embodied-clip 获得。
不要错过赢得奖项和协助机构采用#AI及相关技术(如#NLP #ML)以更好地服务美国人民的机会!快点!@GSA_TTS 的#AppliedAIChallenge 还剩一周,详情请见:(插入 challenge.gov 链接)
鉴于人工智能开发人员在确保人工智能系统、其成果和此类系统用户的责任方面发挥着重要作用,我们需要他们采取负责任、合乎道德和负责任的方法。因此,我们建议这些参与者参与旨在产生负责任的人工智能设计和使用的政策制定过程。根据我们的实证研究结果,我们提出了几项建议,以弥补当前在追求负责任的人工智能时将道德原则、认证标准和解释方法作为问责机制所发现的缺陷。我们希望这些建议能够有助于讨论如何在实践中确保问责制,同时兼顾开发人员、研究人员和公众的观点。
2022 年 1 月 27 日 — (U) 今天,美国情报界 (IC) 拥有大量且不断增长的信息……美国,获取持久位置。
1 中国四川省医学科学院、电子科技大学医学院四川省人民医院内分泌科,成都,2 美国德克萨斯州休斯顿贝勒医学院神经科学系,3 广西中医药大学药学院,南宁,4 成都市龙泉驿区妇幼保健院药学部,成都,5 中国四川省医学科学院、电子科技大学医学院四川省人民医院重症医学科,成都,6 四川省医学科学院、四川省人民医院器官移植中心、临床免疫学转化医学四川省重点实验室,四川,成都
摘要:我们提出了 BEHAVIOR-1K,一个以人为本的机器人综合模拟基准。BEHAVIOR-1K 包括两个部分,分别由“您希望机器人为您做什么?”这一广泛调查的结果指导和推动。第一个部分是定义 1,000 种日常活动,基于 50 个场景(房屋、花园、餐厅、办公室等),其中有 5,000 多个对象,并标注了丰富的物理和语义属性。第二个部分是 O MNI G IBSON,这是一个新颖的模拟环境,它通过逼真的物理模拟和刚体、可变形体和液体的渲染来支持这些活动。我们的实验表明,BEHAVIOR-1K 中的活动是长期的并且依赖于复杂的操作技能,这两者对于最先进的机器人学习解决方案来说仍然是一个挑战。为了校准 BEHAVIOR-1K 的模拟与现实之间的差距,我们提供了一项初步研究,研究如何在模拟公寓中使用移动机械手学到的解决方案转移到现实世界中。我们希望 BEHAVIOR-1K 的人性化本质、多样性和现实性能够使其对具身化 AI 和机器人学习研究有价值。项目网站:https://behavior.stanford.edu。
■ 问题是如何提出的?我们的 PICO 问题是根据我们的从业者导师的临床经验以及与 EBP 教授的后续会议而提出和修改的。我们最初的问题是针对儿科的,但我们的教授和研究图书管理员建议我们将研究结果扩展到成人,以收集更多研究。■ 如何确定搜索标准和选择数据库?搜索标准包括人群、干预和比较。数据库是通过 UTHSC 图书馆资源选择的。■ 如何应用纳入和排除标准?由于儿科人群的证据数量有限,我们将人群扩大到包括成年人群。我们扩大了搜索范围,包括更多基于改良胸骨入路(即 Keep your Move in the Tube)的文章。■ 如何对每项研究完成单独的分析?本质上,您是如何完成单个 CAP 的?我们为每种类型的研究完成了适当的 CAP,并计算了证据水平以确定总体质量。■ 您做了什么来确保过程中的质量控制?例如,该内容领域的导师或专家是否审阅过您的分析,或者您是否使用了其他同行评审方法?我们通过与我们的从业导师、教师导师会面以及同行评审其他成员的文章和表格来确保质量控制。
