量子异常霍尔效应在凝结物理和计量学中具有颠覆性创新,因为它可以根据von-klitzing常数r k = h/e 2在零外部磁场上访问霍尔电阻量化。在这项工作中,我们研究了基于磁性拓扑绝缘体材料(V,BI,SB)2 TE 3的设备中霍尔电阻量化的准确性。We show that the relative deviation of the Hall resistance from R K at zero external magnetic field is (4.4 ± 8.7) nΩ/Ω when extrapolated to zero measurement current, and (8.6 ± 6.7) nΩ/Ω when extrapolated to zero longitudinal resistivity (each with combined standard uncertainty, k = 1), which sets a new benchmark for the quantization accuracy in topological matter.在NΩ/ω水平(或相对不确定性的10 -9)处的这种精度和准确性达到了相关的计量应用的阈值,并建立了零外部磁场量子量子标准电阻标准 - 朝着将量子基于量子的电压和电阻整合到单个通用电气电气电气中的重要步骤。
8本科教学中互惠的挑战理想:不可预测的跨文化实地调查带来的意外好处。高等教育地理杂志,2014,38,208-218。2.6 14
● 更新 CCPS 学生和家长手册,以解决人工智能的使用和学术诚信问题。 ● 更新员工可接受使用培训模块中的内容,为员工提供有关应用于人工智能的学生数据隐私和安全问题的明确指导。 ● 更新现有的数字公民课程,以包括有关适当使用人工智能的内容和课程 ● 通过现有渠道(如年级和系主任会议以及专业学习社区 (PLC))与教师就人工智能不断发展的应用的影响进行持续对话。 ● 提供可导入教师课程的 Canvas 模块内容,以补充通常在年初共享且始终存在于课程中的现有程序信息,例如教学大纲、课堂期望、评分等。
新系统被引入到标签池中。结果将用于评估整个系统的性能(连接、部署、恢复和数据提取)。在项目过程中将制造多达 12 个单元以支持现场测试。单元将在斯特尔瓦根银行国家海洋保护区、夏威夷群岛座头鲸国家海洋保护区和亚速尔群岛海带海洋研究中心进行现场测试。座头鲸是前两个地点的目标物种,众所周知,它们表现出不同的行为,为性能评估提供不同的运动和互动。标签将部署在亚速尔群岛的深海抹香鲸和领航鲸身上,以评估标签对深海物种的性能。喙鲸和灰海豚也存在于研究区域中,如果有的话,它们将成为目标。
子宫颈的摘要癌是一个全球问题,近距离放射治疗是用于治疗此类癌症患者的主要放射治疗成分之一。随着治疗计划中的科学和技术发展的出现,有必要在近距离放射治疗中进行反相反的优化,并与传统的手动优化方法进行了彻底的比较。在这项工作中,物理参数;分别使用D 98和D 90代表的目标体积的最低剂量为98%和90%,用于评估相对于目标的治疗计划,而2厘米3卷(d 2cm 3)收到的最低剂量用于研究处于风险的器官的并发症。使用的符合性指数硬币用于描述按规定的剂量和每个器官的分数,每个器官处于接收临界剂量的风险量,这可能会导致并发症。还根据无放射生物学参数并发症控制概率P +进行了治疗计划评估。与同源手动图形优化计划进行了比较,与两种近距离抗体抗体计划算法相对应的物理和放射生物学评估。这项研究的主要观察结果是,反相反优化方法的良好调整类解决方案可能与手动图形优化计划产生的剂量体积直方图产生相似的剂量量直方图,并且反向方法有可能避免有风险的机器人,同时为目标提供可接受的剂量。此外,放射生物学索引(例如P +)可以对治疗计划评估中的物理参数有用。Elekta Leksell GammaKnife®单位已成功用于颅内恶性肿瘤的管理已有半个多世纪。根据国家和国际法规的要求,为了保护患者,工人,公众和环境,必须通过电离辐射工具构成的风险有足够的知识。从这个角度来看,斯德哥尔摩大学物理系(斯德哥尔摩,瑞典)的核物理研究小组与Elekta Instrument AB(瑞典斯德哥尔摩,瑞典)合作进行了调查,对使用高纯度德国人(Hpge)gamma刀的辐射场进行了调查。作为正在进行的研究的一部分,本工作的主要目的是改善伽马刀周围的辐射场的建模和表征,以询问国家辐射保护与测量委员会(NCRP)方法论对Leksell Gamma刀具治疗室的结构屏蔽设计和评估的功效。在Gamma刀 - 完美TM领域中获得高分辨率γ射线光谱和环境剂量等效H*(10)发生在萝洛林斯卡大学医院(瑞典)(瑞典)Neurosurgery(肿瘤学系)神经外科(肿瘤学系)。分别利用了P型同轴HPGE检测器和卫星测量表来获取γ射线光谱和H*(10)。在Pegasos Monte Carlo系统上模拟了测得的配置。圆柱表面上的一个相空间用敞开的门封闭了伽马刀,并且组装的幻影被用作辐射的来源。在对应于2·10 12衰变的相空间上收集了约4·10 7γ光子。在打开伽马刀门的情况下,大多数辐射是在向前方向上测量的,相对于Z轴,沿向前的方向至θ= 45 O。蒙特卡洛模拟重现了测得的结果;因此,在响应测量和模拟光谱之间实现了良好的一致性。最近的Gamma刀模型Perfexion TM,Icon TM和Esprit TM
我们提出了一个场景表示形式,我们称之为触觉的辐射场(TARF),它将视觉和触摸带入共享的3D空间。此表示形式可用于估计场景中给定3D位置的视觉和触觉信号。我们从一系列照片和稀疏采样触摸探针中捕获了场景的tarf。我们的方法利用了两个见解:(i)基于常见的触摸传感器建立在普通摄像机上,因此可以使用多视图几何形状中的方法对图像进行注册,并且(ii)在视觉和结构上相似的场景区域具有相同的触觉效果。我们使用这些见解将触摸信号注册到捕获的视觉场景中,并训练有条件的扩散模型,该模型带有从神经辐射场呈现的RGB-D图像,生成其相应的触觉信号。为了评估我们的方法,我们收集了一个TARF的数据集。此数据集比预先持有的现实世界数据集包含更多的触摸样本,并且为每个捕获的触摸信号提供了空间对齐的视觉信号。我们揭示了跨模式生成模型的准确性以及在下游任务上捕获的视觉效果数据的实用性。项目页面:https:// dou- yiming.github.io/tarf。
全球气候变化对农作物的生长,发育和产量产生了重大影响。中国东北部的大豆生产是中国传统的大豆生产地区之一,对于发展国内大豆工业并减少对进口大豆的依赖而言,具有很大的意义。因此,评估未来气候变化对中国东北大豆产量的影响至关重要,并提出合理的适应措施。在这项研究中,我们以中国东北部的富吉恩市为例,并使用了DSSAT中的Cropgro-Soybean模型(农业技术转移的决策支持系统)模拟未来气候变化对2020年代四个时期(2021-2030)的四个时期的大豆产量的影响(2041-2050)和2050S(2051-2060)在两个代表性浓度途径(RCP)方案(RCP4.5和RCP8.5)下,进一步确定最佳的农艺管理实践。结果表明,校准和经过验证的模型适合在研究区域模拟大豆。通过分析未来气候场景RCP4.5和RCP8.5在Precis区域气候模型中的气象数据,我们发现,在海伦吉安吉安吉省富士城的生长季节,平均温度,累积降水量和累积太阳辐射将主要增加。与模型仿真结果结合在一起,表明在CO 2受精的效果下,未来的气候变化将对大豆产量产生积极影响。与基线(1986-2005)相比,大豆产量将增加0.6%(7.4%),3.3%(5.1%),6.0%(16.8%)和12.3%(20.6%)和2020年代,2030年代,2040年代,2040年代和2050年度的rcp4.5(RCP4.5)(rcp8.5)。 RCP4.5(RCP8.5)分别为5月10日(5月5日)和50 mm(40mm)。在未来的气候条件下,农艺管理实践,例如在大豆增长的关键阶段推进播种日期和补充灌溉,将增加大豆产量,并使大豆增长更适合未来的气候变化。
1。PSA监督和指南1 1-10 2。客户反馈和绩效评估1 1-10 3。计划,编程,预算1 1-11 C.定价实践和计划I I I-1 D.国防改革计划(DRI)及相关商业实践计划1 1 1-12 E.人员和设施管理计划或计划或信息技术人员/信息技术人员/资源1 1-12 F. F.
在光学介质中,电荷保守性要求在某个位置诱导的光场诱导的电荷密度增加,始终伴随着另一个位置的减少,导致无净宏观诱导的电荷密度。因此,宏观光学场的ρIND¼0和ρ总¼ρext。相比之下,在光学介质中可以存在诱导的J IND6¼0的宏观电流密度。在不含外部源的光学介质中,JExt¼0和ρ总计¼ρeven¼0,但是J总¼J结合了Jcond¼jcond¼jind6¼0:j bound和j bond cond is t is j bound和j cond is t is t to to to optical field均应诱导电流。边界电子极化电流j结合是一个位移电流,始终包含在∂d=∂t项中,但在(1.5)中的J项中不包含。传导电流J Cond也是诱导的电流,但它是由介质中的自由电荷载体携带的。在不存在外部电流和外部电荷的情况下,麦克斯韦方程的形式取决于如何处理传导电流。通常有两种选择。
在本文中,我们从现代 Hopfield 模型的角度研究表格学习。具体来说,我们使用广义稀疏的现代 Hopfield 模型来学习表格数据表示和预测。在这项工作中,引入了 BiSHop(双向 S 分析 Hop 场模型)作为端到端表格学习的创新框架,解决了深度表格学习中的两个挑战:非旋转不变数据结构和特征稀疏性。受到联想记忆和注意力机制之间新建立的联系的启发,BiSHop 采用了双组分策略。它通过双向学习模块按列和按行顺序处理数据,每个模块都配备广义稀疏 Hopfield 层。这些层通过引入可学习的稀疏性扩展了传统的 Hopfield 模型。从方法论上讲,BiSHop 支持多尺度表示学习,能够有效地捕捉特征内和特征间的交互,并在各种尺度上具有自适应稀疏性。在各种真实世界数据集上进行的经验验证表明,BiSHop 以更少的超参数优化 (HPO) 运行超越了当前最先进的方法的性能,标志着深度表格学习的重大进步。
