数据 CNTL ********* 日期 ********* 类型 基金描述 进入状态 基金 CMB EFF 期限 下次变更 10 当前 不受限制 1950 年 7 月 1 日 2099 年 12 月 31 日 A 运营账户 2008 年 7 月 10 日 2099 年 12 月 31 日 A0 运营账户 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 A000 大学范围运营账户 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 A00001 大学范围运营账户 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 A02000 运营-斯普林菲尔德 YA 1950 年 7 月 1 日2099 年 12 月 31 日 A7 LNU 运营账户 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 A700 LNU 大学范围运营账户 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 A70001 LNU 大学范围运营账户 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 A72000 LNU 运营 YA 2012 年 3 月 7 日 2099 年 12 月 31 日 A72001 MSU AA 项目 YI 2009 年 4 月 9 日 2099 年 12 月 31 日 A72002 中国发展 YA 2012 年 3 月 7 日 2099 年 12 月 31 日 A9 WP 运营账户 NA 2008 年 5 月 15 日 2099 年 12 月 31 日 A904 WP 校长运营账户 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 A90401 WP 校长运营账户 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 A92000 WP 运营 YA 2012 年 7 月 1 日 2099 年 12 月 31 日 V0 补助金支付持有 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 V000 补助金支付持有 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 V00001 补助金支付持有 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 V02000 助学金支付保留 YA 1950 年 7 月 1 日 2099 年 12 月 31 日 B 收入账户 2011 年 7 月 1 日 2099 年 12 月 31 日 B0 收入账户 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 B000 大学范围收入账户 NA1950 年 7 月 1 日 2099 年 12 月 31 日 B00001 大学范围收入账户 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 B001 校长收入账户 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 B00101 校长收入账户 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 B02000 运动训练治疗 YA 2013 年 9 月 16 日 2099 年 12 月 31 日 B02001 精神团体产生的资金 YI 2020 年 1 月 17 日 2099 年 12 月 31 日 B02002 教职工参议院特别活动 YA 2013 年 11 月 26 日 2099 年 12 月 31 日 B02003 PRES 保留基金-NIETZEL YA 1950 年 7 月 1 日 2099 年 12 月 31 日 B02241 学校艺术中心 YI 2018 年 5 月 11 日 2099 年 12 月 31 日 B02242 百年图书和活动 YA 1950 年 7 月 1 日 2099 年 12 月 31 日 B02245 MSU 儿童俱乐部 YA 2013 年 9 月 23 日 2099 年 12 月 31 日 B02296 创新学院储备 YI 2015 年 6 月 2 日 2099 年 12 月 31 日 B02304 高等教育网络会议 YI 2013 年 1 月 7 日 2099 年 12 月 31 日 B02416 OSE-熊带来希望 YI 2015 年 1 月 14 日 2099 年 12 月 31 日 B02459 VPD&I - 模式 YI 2023 年 8 月 30 日 2099 年 12 月 31 日 B02507 PUB AFF 名人堂仪式 YA 2013 年 7 月 1 日 2099 年 12 月 31 日 B02552 ALLIE STRONG-筹款 YI 2018 年 5 月 11 日 2099 年 12 月 31 日 B02565 体育-慈善活动 YI 2018 年 5 月 11 日 2099 年 12 月 31 日 B02631 女子足球校友周末 YA 2015 年 7 月 1 日 2099 年 12 月 31 日 B02735 网络无障碍峰会 YA 2018 年 11 月 29 日 2099 年 12 月 31 日 B02786 OIEC 无障碍项目基金 YA 2019 年 7 月 1 日 2099 年 12 月 31 日 B02804 运动啦啦队训练营 YA 2021 年 7 月 1 日 2099 年 12 月 31 日 B002 教务长收入账户 NA 1950 年 7 月 1 日 2099 年 12 月 31 日 B00201 煤炭收入账户 NI 2025 年 1 月 22 日 2099 年 12 月 31 日 B00202 COB 收入账户 NA 2012 年 8 月 8 日 2099 年 12 月 31 日 B02038 COB-ST JOHNS 高级工商管理硕士YA 2012 年 8 月 8 日 2099 年 12 月 31 日 B02041 公交经济发展中心 YI 2024 年 11 月 25 日 2099 年 12 月 31 日
efrag - 欧洲财务报告咨询小组 - 开发了欧洲可持续性报告标准(ESRS),该标准为公司报告环境,社会和治理(ESG)主题提供了一个框架。必须对所有受公司可持续性报告指令(CSRD)约束的公司报告12个标准
首先,我必须感谢我的导师卡洛·卡索纳托 (Carlo Casonato) 和保罗·特拉弗索 (Paolo Traverso),感谢他们相信我,并勇敢地为我提供了在不同学科之间工作的机会。我特别感谢前者在写作过程中给予我的宝贵建议和持续支持,也感谢后者给予我机会经常接触布鲁诺凯斯勒基金会并结识在其中工作的优秀专业人士。我还要非常感谢整个 BioDiritto 研究小组 (Carla、Cinzia、Elisabetta、Giulia、Lucia、Marta I、Marta II、Sergio 和 Simone),他们让我从第一天起就感到宾至如归,不断给予鼓励,并提供许多团队合作的机会,让我始终面带微笑。尤其是玛尔塔,她是我的宝贵向导和忠实盟友,在困难时期我可以向她寻求建议和安慰。我还要感谢安德里亚 (Andrea)、洛伦佐 (Lorenzo)、莫妮卡 (Monica) 以及 Trentino Salute 4.0 团队的其他成员,我非常感谢他们在一个对我来说完全陌生的环境中给予我的欢迎,以及他们为我提供的无数跨学科融合的机会。出于同样的原因,我将永远感激 Paolo、Giorgia 和 Federico,他们和我一样都是与基金会有联系的法学家,为我提供了取之不尽的思想、激励和建议。此外,我还得到了慕尼黑马克斯普朗克社会法和社会政策研究所以及哥本哈根大学生物医学创新法中心研究人员的大力帮助,他们使我在国外的研究期间成为与其他法系的法学家交流的宝贵机会。对于这些机会,我首先要感谢 Ulrich Becker 教授、Timo Minnsen 教授和 Marcelo Corrales Compagnucci 教授,他们负责这些中心并给予了我热烈的欢迎。然后,还有我的家人——自从我出生以来,他们一直默默地支持和忍受着我——还有我的朋友,所有人。安吉拉、安娜、克劳迪娅、克劳迪奥、达维德、弗朗西斯科、弗朗西斯卡、乔治奥、乔瓦尼、朱利奥、艾琳、卢卡、玛蒂娜、罗伯托以及其他从小就陪伴我走过道路的人;安娜、阿尔贝托、安东内拉、基娅拉、克里斯蒂安、克拉拉、费德里科、乔治娅、朱莉娅、米歇尔、奥兰、萨拉、西蒙娜,他们是后来才来的,但在我看来,他们一直都在那里; CNR 的人;马里奥 (Mario)、亚历山德罗 (Alessandro) 和 Dinamo Kave 的所有人;因为足球,队友们成为了旅途中的伙伴; Berdien、Federico、Giovanni、Marta 和 Matteo,感谢这个世界上罕见的真挚友谊;我已不再见到他,但对他的记忆将永远使这些年变得特别。最后,埃琳娜。她知道为什么。
占澳大利亚葡萄酒生命周期期间生产的温室气体排放的74%的运输和玻璃包装,这些区域是改善该行业减少碳足迹的努力的明显目标。在我们的“ net net Zero”系列的第四篇也是最后一篇文章中,作者比较了不同包装选项的碳足迹以及其选择中涉及的技术考虑。
电气和电子工程师协会 › iel7 作者 C Wang · 2022 · 被引用 1 — 作者 C Wang · 2022 被引用 1 (MPI) [27],并行计算中的通信标准。... 基于代理的电力系统建模和仿真的计算。
视觉场景是自然组织的,在层次结构中,粗糙的语义递归由几个细节组成。探索这种视觉层次结构对于认识视觉元素的复杂关系至关重要,从而导致了全面的场景理解。在本文中,我们提出了一个视觉层次结构映射器(HI-MAPPER),这是一种增强对预训练的深神经网络(DNNS)结构化理解的新方法。hi-mapper通过1)通过概率密度的封装来调查视觉场景的层次结构组织; 2)学习双曲线空间中的分层关系,并具有新颖的分层对比损失。预定义的层次树通过层次结构分解和编码过程递归地与预训练的DNN的视觉特征相互作用,从而有效地识别了视觉层次结构并增强了对整个场景的识别。广泛的实验表明,Hi-Mapper显着增强了DNN的表示能力,从而改善了各种任务的性能,包括图像分类和密集的预测任务。代码可在https://github.com/kwonjunn01/hi-mapper上找到。
学习表征捕获对世界的非常基本的理解是机器学习的关键挑战。隐藏在数据中的解释因素的层次结构是如此一般的表示,并且可以通过分层VAE实现。然而,培训层次的VAE总是遭受“后塌陷”的苦难,其中数据信息很难传播到更高级别的潜在变量,因此导致层次结构不良。为了解决这个问题,我们首先是从信息理论的角度来减轻后层崩溃的现有方法的缺点,然后突出了正规化的必要性,即在维持不同级别之间的依赖性的同时,将数据信息明确传播到高级潜在变量。这自然会导致提出高级潜在表示作为顺序决策过程的推断,这可能受益于应用强化学习(RL)。将RL的目标与正规化的目标保持一致,我们首先引入了一条跳过的途径,以获取奖励,以评估潜在的潜在表示的信息内容,然后基于它的Q-VALUE函数可能具有正规化的一致优化方向。最后,策略梯度是典型的RL方法之一,用于训练层次VAE,而无需引入梯度估计器。1。简介实验结果坚定地支持我们的分析,并证明我们提出的方法有效地减轻了后塌陷问题,学习了信息的层次结构,获得了可解释的潜在表示,并且在下游任务中明显优于其他基于层次的VAE方法。
仅加热和冷却就占总能源使用量的一半。由于其中 66% 的能源来自化石燃料 [2],因此,高效隔热和冷却材料对于降低人为 CO 2 排放至关重要。除了提供所需的热性能外,此类材料还应安全、可回收,并在制造和运行过程中消耗最少的能量。最先进的绝缘材料还不能满足这些要求。聚合物基绝缘体(例如发泡/挤塑聚苯乙烯和聚氨酯泡沫)的热导率相对较低,但耐火性和报废可回收性有限。尽管无机绝缘体具有固有的耐火性,但玻璃棉和矿棉在制造过程中涉及高能量过程,并且表现出被认为对人体健康有害的纤维形态。气凝胶是一种有吸引力的高性能绝缘无机材料,但其高成本迄今为止限制了其在小众应用中的使用。现有绝缘材料的优点和缺点为开发新技术提供了机会。多孔陶瓷因其成本低、耐火、可回收和导热系数相对较低等优点,最近作为替代隔热材料受到了越来越多的关注。[3–7] 除了隔热之外,多孔陶瓷还被用于通过实现建筑元素的被动冷却来改善建筑物的热管理。[8] 被动冷却依赖于渗入陶瓷孔隙中的水的蒸发,在蒸汽压缩技术出现之前,这种机制长期用于降低食物和水的温度。由于孔隙是隔热和蒸发冷却所需的关键结构特征,因此制造具有可控孔隙率的陶瓷对于开发用于建筑热管理的节能技术具有巨大潜力。在本研究中,我们使用湿泡沫模板 3D 打印分层多孔陶瓷,并研究其用于建筑元素热管理的隔热和蒸发冷却性能。分层多孔结构设计为包含大量大孔,可降低材料的导热性,同时还显示实现毛细管驱动被动冷却所需的微米级孔隙。利用粘土作为可回收、廉价且广泛可用的材料资源,我们首先开发了湿泡沫
解决复杂的,暂时扩展的任务是控制学习(RL)的长期问题。我们假设解决此类问题的一个关键要素是组成性的概念。具有学习概念和子技能的能力,这些概念和子技能可以构成解决更长的任务的能力,即层次RL,我们可以获取时间扩展的行为。但是,为层次RL获取有效但一般的抽象是极具挑战性的。在本文中,我们建议将语言用作抽象,因为它提供了独特的组合结构,实现了快速学习和组合概括,同时保持了极大的灵活性,使其适合各种问题。我们的方法学习了一个遵循指令的低级政策和高级政策,该政策可以在本质上重复跨任务的抽象,从而允许代理人使用结构化语言进行推理。为了研究组成任务学习,我们介绍了使用Mujoco物理引擎和CLEVR引擎构建的开源对象相互作用环境。我们发现,使用我们的方法,代理可以学会求解各种暂时扩展的任务,例如对象排序和多对象重排,包括来自原始像素观测值。我们的分析表明,语言的组成性质对于学习各种亚技能和系统地推广到新的亚技能至关重要,与使用相同监督的非复合抽象相比,语言的构成性质至关重要。2
太阳能诱导的叶绿素荧光(SIF)已成为植被生产力和植物健康的有效指标。SIF的全球量化及其社会不确定性产生了许多重要的功能,包括改善碳通量估计,改善碳源和水槽的识别,监测各种生态系统以及评估碳序列工作。长期,区域到全球尺度监测现在是可行的,可以从多种地球观察卫星中获得SIF估计。这些努力可以通过严格的卫星SIF数据产品中存在的不确定性来源的严格核算来帮助这些努力。在本文中,我们引入了一个贝叶斯分层模型(BHM),以估算从1°×1◦分辨率分辨率分辨出具有全球覆盖的旋转碳天文台-2(OCO-2)卫星观测中的SIF和关联不确定性。我们的建模框架的层次结构允许方便模型规范,各种变异源的量化以及通过回归模型中的傅立叶项纳入季节性SIF信息。模型框架利用大多数温带土地区域的SIF可预测的季节性。所得数据产品以相同时空分辨率的现有大气二氧化碳估计值进行了补充。