Acronyms ADC A nalog-to- D igital C onverter AIRS A tmospheric I nfra r ed S ounder AMSU A dvanced M icrowave S ounding U nit ATBD A lgorithm T heoretical B asis D ocument ATMS A dvanced T echnology M icrowave S ounder CCA C ircuit C ard A ssembly DN D ata N umber DPLX D i pl e x er EDR E nvironmental D ata R ecord EOS E arth O bserving S ystem EU E ngineering U nit EUMETSAT E uropean O rganization for the E xploitation of M eteorological S atellites GEO GEO location HAMSR H igh A ltitude M MIC S ounding R adiometer HIRS H igh resolution I nfrared R adiation S ounder HKPG H ouse K ee P in G IF I ntermediate F requency IMAS I ntegrated M ultispectral A tmospheric S ounder IMF I nstantaneous M easurement F requency IDPS I nterface D ata P rocessing S egment IR I nfra r ed LO L ocal O scillator LNR L ow- N oise R eceiver MHS M icrowave H umidity S ounder MMIC M onolithic M icrowave I ntegrated C ircuit MSU M icrowave S ounding U nit MUX MU ltiple X er MW M icro W ave MXR M i X e R NASA N ational A eronautics and S pace A dministration NEDT N oise- E quivalent D ifferential T emperature NGES N orthrop G rumman E lectronic S ystems NOAA N ational O ceanic and A tmospheric A dministration NPOESS N ational P olar-orbiting O perational E nvironmental S atellite S ystem NPP N POESS P reparatory P roject PLLO P hase L ocked L ocal O scillator POES P olar-orbiting O perational E nvironmental S atellite PRT P latinum R esistance T图仪质量计q quality a sessment qc q otaly c introl rdr rd a a a a rf ecord rf rf r adio fre ffe rfe r adimeter f ront e nd s s urface s urface a coustict w ave
通常通过 PCR 对淋巴肿瘤中的微小残留病 (MRD) 进行灵敏的定量分析,使用免疫球蛋白或 T 细胞受体基因重排作为靶标,并使用患者或等位基因特异性寡核苷酸 (ASO) 作为引物。自 30 年前首次描述以来,ASO-qPCR 得到了广泛的应用,尤其是在欧洲,欧洲MRD 联盟成员发表的论文提供了有关该方法执行的指南和通用反向引物的推荐序列 [1-3]。如果候选患者特异性正向引物可以将 MRD 定量到 10 −4 的水平,则可以使用它,该引物的序列是患者独有的并且是特定于患者的。一些引物可以定量到 10 −4 以下,但有些会失败 [4]。失败有时可能是由于假阳性,但原因通常不清楚。 HAT-PCR(高 A/T PCR 或高退火温度 PCR)是 qPCR 的一种最新改进,其涉及引物设计和扩增条件的改进,以提高特异性并降低 MRD 检测中假阳性结果的频率 [5]。当检测 20 μg DNA 时,它的检测限为 10 −65 。在开发 HAT-PCR 之后,研究了根据欧洲 MRD 指南使用患者特异性正向引物和推荐的反向 J 引物进行的传统 qPCR 的灵敏度。单个引物对通常可以检测到低至 10 −4 的 MRD 水平,但经常无法检测到更低的水平。PCR 可以潜在地将单个靶标扩增到检测点 [6],但靶标的扩增有时会被与基因组 DNA 同时纯化的外在物质或另一种内在扩增反应所抑制。引物二聚体扩增引起的抑制很常见,人们已对 PCR 进行了多项技术改进以尽量减少这种抑制 [ 7 , 8 ]。其他脱靶 DNA 序列的扩增反应也已被观察到 [ 9 ],但此类反应的特征不甚了解,其重要性尚不清楚。传统 qPCR 无法将 MRD 定量低于 10 −4,这被证明是由于引物与基因组 DNA 相互作用造成的。除了有报道称碎片化的基因组 DNA [ 10 ] 可能会抑制 PCR 外,基因组 DNA 在 PCR 中的作用并未引起人们的兴趣。但是,我们认为分析这种现象很重要,原因有二。首先,了解和预防它可以提高 MRD 定量的灵敏度。其次,其他 PCR 检测需要在存在基因组 DNA 的情况下灵敏地检测靶标,因此可能容易受到抑制。因此,分析抑制及其预防机制可能与许多 PCR 检测的设计相关。
Nus High s Chool Nus数学和科学高中是新加坡的独立专业教育学校,为数学和科学才华提供了自己独特的六年文凭课程。由新加坡教育部(MOE)和新加坡国立大学(NUS)于2005年成立,我们为新加坡唯一一项基于学校的天才教育计划,以获得数学和科学才能。该课程是为在每个队列中对数学和科学充满热情的前180名学生设计的。学生毕业于NUS高中文凭,该文凭是由Moe和Nus正式认可的,并获得了著名的当地和海外大学的认可。压实和加速的课程吸引了学生。所有学生都将超越其他新加坡学校的数学和科学标准,以及作为毕业要求的完整强制性研究 /创新项目。它还允许最好的人跳过课程并进一步加速大学课程。学生享受自我指导的学习,多学科课程和跨学科项目。在三级机构和行业的支持下,学校的学术和角色建设计划培养了可以在复杂问题上挣扎并以不同的思考的学生;他们不怕冒险进入未知的人,创新并为改善人类提供独特的解决方案。我们的使命
使用微电极阵列进行细胞外记录 ...................................................................................................................................................... 7 电极、轨道和绝缘层 ................................................................................................................................................................ 9 电极类型和布局 ...................................................................................................................................................................... 9 标准 MEA ...................................................................................................................................................................... 12 高密度 MEA:60HDMEA ...................................................................................................................................................... 13 H EXA MEA:60H EXA MEA40/10 ............................................................................................................................................. 14 薄 MEA:60T HIN MEA ............................................................................................................................................................. 15 透明 MEA ............................................................................................................................................................................. 16 三维 MEA:60-3DMEA 和120-3DMEA ........................................................................................................... 17 E CO MEA:60E CO MEA ........................................................................................................................................... 18 穿孔 MEA:60 P MEA ................................................................................................................................................ 19 穿孔 MEA,用于 MEA2100-32-S 系统和 USB-MEA32-STIM4-S 系统 ............................................................................. 20 带 6 孔的 MEA:60-6 孔 MEA ............................................................................................................................................. 21 256MEA,用于 MEA2100-256- 和 USB-MEA256-S 系统 ............................................................................................. 23 带 9 个孔的 MEA,用于 MEA2100-256 和 USB-MEA256-S 系统 ............................................................................................. 24 120MEA,用于 MEA2100-120-S 系统 ......................................................................................................................... 25 120MEA1000-1500/30 I RT I,用于 MEA2100-120-S 系统 ........................................................................................................................ 26 四象限测量仪: 60-4QMEA1000 ...................................................................................................................................... 27 方形测量仪: 60S 方形测量仪 ......................................................................................................................................... 28 PEDOT-CNT 测量仪: 60PEDOT 测量仪......................................................................................................................................... 29 柔性测量仪 ............................................................................................................................................................................. 30 测量信号发生器: 60MEA-SG ......................................................................................................................................................... 34
通过含有高能量密度的废物的铜(II)(II)氧化物/石墨烯(CUO/GO)纳米复合材料生产。确定了纳米复合材料,例如CuO,铜(I)氧化物(Cu 2 O),Cuo-Go,Cu 2 O-Go对H 2生产效率的影响。用XRD和FTIR分析分析了Cuo,Cu 2 O,Cu-go,Cu 2 o的物理化学特性,例如其结构,形态和表面性能,用于H 2产生H 2的产生。用气相色谱 - 质谱法(GC-MS)测量 H 2(G)生产。在实验研究中,不断控制H 2产生的重要最佳反应条件,例如温度,压力和反应速率。对于最大H 2产生(4897 mmol),电子孔对和纳米复合材料直径的寿命应分别为350 ns和10 µm。阳离子(CD +2和Fe +3)阴离子(Cl -1和SO 4 -2)浓度应为0.01 mg/L和0.1 mg/L,而CuO/GO纳米复合材料中的Cu +2 persentage应在40 mg/L浓度的纳米复合浓度中为3%,在40 mg/L浓度下,在pH = 8.0 mg/l = 8.0,在ph 40 mg/l = 8.0。由于这些结果,Al的H IG -igh能量密度可提供高H 2的高生产,而Al +3消耗率低。最后,Al +3水反应导致零温室气体排放,而Al +3反应是放热的,并且氢氧化铝[AL(OH)3]可以转换为Al 2 O 3,可以回收Al +3。
(2008 年 - 2018 年)...................................................................................................................... 13 图 9:英国脱欧后核实的排放量、旧上限和修订的上限。 ................................................................................................ 14 图 10:欧盟 28 国电力部门的二氧化碳排放量和发电碳强度(2005-2020 年) ............................................................................................. 17 图 11:不同热效率的转换价格(与欧盟价格相比) ............................................................................................. 17 图 12:德国燃料转换的证据 ............................................................................................................................. 18 图 13:拍卖收入的使用情况 ............................................................................................................................. 19 图 14:配额的净成本 ............................................................................................................................. 20 图 15:免费配额的累计盈余——炼油、钢铁和水泥熟料 ................................................................ 20 图 16:跨部门修正因子对铝、造纸及纸浆 ULP 部门的影响 ........................................ 21 图 17:四个部门间接成本的高端估算 ............................................................................................. 22 图 18:EUA 交易量 ......................................................................................................................................... 24 图 19:累计未平仓合约的季节性 ......................................................................................................................... 25 图 20:EU ETS 拍卖覆盖率 ......................................................................................................................... 25 图 21:拍卖价格与现货价格之间的月平均差额 ......................................................................................................... 26 图图 22:持有成本 – EUA 与 AAA 欧盟五年期债券 ...................................................................................................... 26 图 23:波动率 ................................................................................................................................................ 27 图 24:EUA 和 TNAC 的供应与需求 ...................................................................................................................... 27 图 25:EUA 价格预测 ...................................................................................................................................... 28 图 25:不同气候目标中 ETS 和 ESR 部门的相对贡献(与 2005 年排放量相比)– ETS
空军................................................................. .................................................................. .................. 飞机和人员实力............................................................... .................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. .................................................................................. ................................ 制导弹系统 ................................................................ 表 IA - 苏联作战部队飞机 ........................................................ .... .............................................................. 表 IB - 苏联作战部队远程航空兵 ........................................................ 表 II - 1959 年中期苏联空军主要组成部队 ........................................................ 表 III - 1959 年中期苏联战术航空兵部署 ............................................................. 表 IV - 1959 年中期战斗机部署 . . . ........................................................................... 表 V - 1959 年中期苏联海军航空兵的部署........................................................ 表 VI - 1959 年中期欧洲卫星空军的兵力分布........................................................ .... ■ ■ • 表 VII - 欧洲卫星空军的类型......................................................................................................... 表 VIII - 1961 年和 1963 年苏联战术航空兵的兵力和部署............................................................................. 表 IX - 1961 年和 1963 年防空战斗机航空兵的兵力和部署..................................................................................... 表 X - 1961 年和 1963 年苏联海军航空兵的兵力和部署.............................................................................
频率响应 BESS 在项目的斜率限制内,对高于和低于 BESS 频率设定点(或死区)的频率偏差提供响应的能力 FRT 频率跨越 FNTP 全面通知以继续进行 GHS 全球协调系统 GHz 千兆赫 HMI 人机界面 HV 高压 HV AC 高压交流电 HVAC 供暖、通风和空调 Hz 赫兹,电频率单位 IEC 国际电工委员会 IED 智能电子设备 IEEE 电气和电子工程师协会 逆变器 本规范中的所有逆变器均指四象限、双向、智能逆变器。 ISO 独立系统运营商 kHz 千赫 kW 千瓦时 千瓦时 千瓦时 kV 千伏 LGIA 大型发电互联协议 LHFRT 低频和高频穿越 LHVRT 低压和高压穿越 负荷跟踪 BESS 根据指定位置的实际功率需求变化,为特定计量电气位置(即互联点 (POI))提供实际功率响应的能力 LPS 防雷系统 LV 低压 MHz 兆赫 mil 长度测量单位(千分之一英寸) MPT 主电力变压器 MTBF 平均故障间隔时间 ms 毫秒 MV 中压 MVT 中压变压器 MVA 兆伏安 MW 兆瓦 MW AC 兆瓦交流电 MWh 兆瓦小时NEC 国家电气规范 NEMA 国家电气制造商协会 NFPA 国家消防协会
高频交易(HFT)使用计算机算法在短时间(例如第二级)中做出交易决策,该决策被广泛用于加密货币(Crypto)市场(例如比特币)。钢筋学习(RL)在Financial Research中表明,在许多Quantative交易任务上表现出色。但是,大多数方法都集中在低频交易上,例如日级,由于两个挑战,不能直接应用于HFT。首先,用于HFT的RL涉及处理非常长的轨迹(例如每月240万步),这很难优化和评估。其次,加密货币的急剧价格波动和覆盖趋势变化使现有算法无法保持令人满意的性能。为了解决这些挑战,我们提出了一种用于Hig f Reding(Earnhft)的方法,这是一个新颖的HFT三阶段层次RL框架。在第一阶段,我们计算了一个基于动态编程的最佳动作值,以提高二级RL代理的绩效和训练效率。在第二阶段,我们为不同的市场趋势构建了不同的RL代理,以回报率为特色,其中数百个RL代理人接受了不同的回报率偏好训练,只有一小部分将根据其盈利能力选择到池中。在第三阶段,我们训练了一个分钟级别的路由器,该路由器动态从泳池中挑选第二级代理商,以在不同市场上取得稳定的性能。通过在高保真仿真交易环境中对加密市场的各种市场趋势进行广泛的实验,我们证明,在3个流行的财务标准中,Earnhft显着超过了6个最先进的基线,超过了亚军的盈利者30%。
医学物理部,纪念斯隆·凯特林癌症中心,纽约,美国摘要这项工作介绍了用于进行人工智能的用户友好,基于云的软件框架(AI)分析医学图像。该框架允许用户通过自定义软件和硬件依赖性来部署基于AI的工作流程。我们的软件框架的组件包括用于放射学研究的Python本地计算环境(Pycerr)用于放射图像处理的平台,用于访问硬件资源和用户管理公用事业的癌症基因组学云(CGC),用于从数据存储库中访问图像,并从数据存储库中访问图像,并安装AI模型及其依赖模型及其依赖。GNU-GPL版权Pycerr从基于MATLAB的CERR移植到Python,使研究人员能够从H IGH维度的多模式数据集组织,访问和转换元数据,以在放射治疗和医学图像分析中构建与云兼容的工作流程,以构建云兼容工作流程。pycerr提供了可扩展的数据结构,可容纳常用的医学成像文件格式的元数据和观众,以允许多模式可视化。提供了分析模块,以促进与云兼容AI的工作流程,用于图像分割,放射素学,DCE MRI分析,放射疗法剂量 - 剂量 - 基于基于剂量的直方图以及正常的组织并发症和肿瘤控制模型用于放射治疗。提供了图像处理实用程序,以帮助训练和推断基于卷积神经网络的模型,以进行图像分割,注册和转换。可以使用CGC提供的API访问部署的AI模型,从而使其在各种编程语言中使用。该框架允许对成像数据进行往返分析,使用户能够将AI模型应用于CGC上的图像,并在其本地机器上检索和查看结果,而无需本地安装专用软件或GPU硬件。总而言之,提出的框架有助于端到端放射图像分析和可重复的研究,包括从源头提取数据,从AI模型中训练或推断出数据,用于数据管理的公用事业,可视化以及简化对图像元数据的访问。