Jakson Green 是一个新能源转型平台,由总部位于印度的基础设施和可再生能源巨头 Jakson Group 提供支持,专注于新能源资产的 EPC、IPP、IHP 和 O&M,涵盖太阳能、公用事业规模存储、垃圾发电、燃料电池技术、气化项目、绿色氢能和绿色氨项目。在可再生能源行业资深人士 Bikesh Ogra 的推动和领导下,该公司自成立以来在短时间内建立了令人印象深刻的全球影响力,并计划到 2030 年实现 15GW 的产能。该公司最近成立了电解器制造部门,并在全球范围内建设和运营绿色氢能资产,这符合其成为一家 power-to-X 参与者的愿景,到 2030 年,每年累计生产超过 50 万吨绿色氢能/氨。
I. Santamaria在西班牙桑坦德市的Cantabria大学通信部门(电子邮件:i.santamaria@unican.es)。M. Soleymani与德国Paderborn 33098 Uni-VersitätPaderborn的信号和系统理论小组(电子邮件:moham- mad.soleymani@sst.upb.de)。E. Jorswieck曾与德国Braunschweig 38106 TechnischeUniversitätkraunschweig一起在德国Braunschweig的TechnischeUniversität大学(电子邮件:e.jorswieck@tu-bs.de)。J.Gutiérrez与IHP-Leibniz-InstitutFür创新的Mikroelelektronik,15236 Frankfurt(Oder),德国(电子邮件:teran@ihp- microelectronics.com)。根据Grant PID2019-104958RB-C43(Adele)(Adele),Santamaria I. Santamaria的工作得到了Ciencia EInnovación和AEI部长的支持。Eduard Jorswieck的工作是由联邦教育和研究部(德国BMBF,德国)通过“Souverän计划”所支持的。数字。vernetzt。”联合项目6G-RIC,根据16Kisk020k和16Kisk031的赠款。
我们研究的各州采用了从规定性到灵活性的各种方法。明尼苏达州和俄亥俄州对其 MCO 采取了规定性措施。明尼苏达州要求 MCO 向责任医疗组织 (ACO)(称为综合医疗伙伴关系 (IHP))支付共享节省款项。俄亥俄州要求 MCO 将 FFS 支付给提供商的费用与特定护理期间提供的所有服务的目标支出金额进行核对,还要求 MCO 向参与综合初级保健 (CPC) 计划的提供商支付额外的护理协调费用。相比之下,南卡罗来纳州和新墨西哥州采用更灵活的方法,要求 MCO 达到一定水平的 VBP 活动,但允许 MCO 灵活地确定为每个提供商实施哪些支付模式。纽约州采用混合方法,允许 MCO 在州定义的支付改革方法菜单中具有一定的灵活性。
a IHP–Leibniz-Institut fu¨r innovative Mikroelektronik,Im Technologiepark 25,15236 Frankfurt (Oder),德国 b Istituto Italiano di Tecnologia – Materials Characterization Facility,热那亚 16163,意大利 c CIC nanoGUNE BRTA,20018 Donostia-San Sebastia´n,巴斯克地区,西班牙。电子邮箱:b.martingarcia@nanogune.eu d IKERBASQUE,巴斯克科学基金会,48009 Bilbao,西班牙 † 可用的电子补充信息 (ESI):化学蚀刻过程中的 Te 晶体照片和所研究 Te 晶体蚀刻坑的光学图像;关于拉曼数据采集条件和硅 (100) 极化测试的对照实验;交叉配置中角度相关的线性偏振拉曼光谱测量;线性偏振拉曼光谱的拉曼张量分析;以及 (100) 和 (110) 平面的圆偏振拉曼光谱测量。请参阅 DOI:https://doi.org/10.1039/d3tc04333a
摘要:皮秒雪崩探测器是一种基于 (NP) 漂移 (NP) 增益结构的多结硅像素探测器,旨在实现带电粒子跟踪,具有高空间分辨率和皮秒时间戳功能。它使用传感器体积深处的连续结来放大薄吸收层中电离辐射产生的一次电荷。然后,在较厚的漂移区内移动的二次电荷会引发信号。IHP 微电子公司使用 130 nm SiGe BiCMOS 工艺生产了一个概念验证单片原型,该原型由间距为 100 µ m 的六边形像素矩阵组成。探测站和 55 Fe X 射线源的测量表明,原型机可以正常工作,并且显示雪崩增益,最大电子增益可达 23。雪崩特性研究(经 TCAD 模拟证实)表明,55 Fe 源的 X 射线转换产生的较大初级电荷引起的空间电荷效应限制了有效增益。
单片有源像素传感器 (MAPS) [ 1 ] 将传感器包含在与电子元件相同的 CMOS 基板中,它具有工业标准 CMOS 处理的所有优点,避免了粒子物理实验中常用的凸块键合混合像素传感器的生产复杂性和高成本,因此特别具有吸引力。今天,MAPS 代表着一项成熟的技术,其性能可与混合硅像素传感器相媲美。事实上,MAPS 已经在大型 LHC 实验中使用[ 2 ]。CERN 高亮度 LHC 项目期间预计将出现大量事件堆积,这需要几十皮秒的计时能力[ 3 ]。这种计时水平将在 ATLAS [ 4 ] 和 CMS [ 5 ] 升级探测器中通过大约 1 毫米粗空间粒度的计时层实现。在开发这项成熟技术的同时,粒子物理学界正在尝试为未来项目开发具有高空间分辨率和同等计时能力的硅传感器。在 [6] 中可以找到对当前这方面努力的最新回顾。该研究小组正在尝试开发具有皮秒时间能力的 MAPS。利用商用 SG13G2 IHP 130 nm 工艺 [7],我们制作了一系列单片原型,这些原型具有速度极快且噪声极低的 SiGe HBT 前端电子器件,使用没有内部增益层的标准 PN 结传感器可实现低至 36 ps 的时间分辨率 [8-12]。这条研究路线源于 MONOLITH H2020 ERC Advanced 项目 [13],该项目利用新型多 PN 结 PicoAD 传感器 [14],通过连续深增益层提供的信噪比增强实现皮秒级的时间分辨率。[15] 和 [16] 报告了使用 PicoAD 概念验证单片原型获得的结果。最近,MONOLITH 项目的第二个单片硅像素矩阵原型采用 SG13G2 IHP 工艺生产。ASIC 包含 [ 12 ] 前端电子器件的改进,旨在提高操作能力。在制造实现增益层的特殊 PicoAD 晶圆的同时,还使用厚度为 50 µm 的外延层晶圆(电阻率为 350 Ω cm)生产了带有标准 PN 结传感器的版本。在本文中,我们展示了使用不带内部增益层的第二个 MONOLITH 原型获得的测试光束结果。
The H2020-SPACE-ORIONAS Project “Lasercom-on-chip” for High-speed Satellite Constellation Interconnectivity A. Osman a , I. Sourikopoulos a , G. Winzer b , L. Zimmermann b , A. Maho c , M. Faugeron c , M. Sotom c , F. Caccavale g , A. Serrano Rodrigo h , M. Chiesa h , D. Rotta h ,G。B. Preve I,J。Edmunds D,M。Welch D,S。Kehayas D,W。Dorward J,F。Duport E,R。Costa F,D。Mesquita F和L. Stampoulidis A Leo Space Photonics R&D,Lefkippos Tech。公园,27 Neapoleos Str。,Ag。Paraskevi,15341,雅典,希腊B IHP GmbH,法兰克福(Oder),德国C Thales Alenia Space,26 AV。J-F Champollion,31037 Toulouse Cedex 1,法国D Gooch和Housego,Broomhill Way,Torquay,Torquay,Devon,Devon,TQ2 7QL,英国E IIII-V LAB,“ NOKIA BELL LABS”的联合实验室,“ NOKIA BELL LABS”,“ THALES REANCESS READIODS READICY
背景布卢姆菲尔德大坝位于爱德华王子县布卢姆菲尔德村内,布卢姆菲尔德溪沿岸。布卢姆菲尔德溪的流域总面积约为 54 平方公里,其中约 13.5 平方公里是布卢姆菲尔德大坝的支流。大坝的主要作用是建造一个水库;称为 Mill Pond,可用于娱乐目的(即钓鱼、划独木舟等)并提供消防水源。大坝建于 1975 年。大坝由一个紧急溢洪道、一个土石坝、一个牵牛花取水口、一条穿过大坝的嵌入式混凝土进水管、一个 18 英寸低流量阀、一个出水口和一个下游出水通道组成。阀门未使用。2013 年的 OMS 指出,落差进水结构有挡水板;挡水板现已不再安装。哈奇 (Hatch) 完成的 2009 年 DSR 发现,根据 ODSG 草案 (MNR, 1999),该大坝因可能造成人员伤亡而被评定为“重大”IHP 等级。
摘要:皮秒雪崩探测器是一种基于 (NP) 漂移 (NP) 增益结构的多结硅像素探测器,旨在实现带电粒子跟踪,具有高空间分辨率和皮秒时间戳功能。它使用传感器体积深处的连续结来放大薄吸收层中电离辐射产生的一次电荷。然后,在较厚的漂移区内移动的二次电荷会引发信号。IHP 微电子公司使用 130 nm SiGe BiCMOS 工艺生产了一个概念验证单片原型,该原型由间距为 100 µ m 的六边形像素矩阵组成。探测站和 55 Fe X 射线源的测量表明,原型机可以正常工作,并且显示雪崩增益,最大电子增益可达 23。雪崩特性研究(经 TCAD 模拟证实)表明,55 Fe 源的 X 射线转换产生的较大初级电荷引起的空间电荷效应限制了有效增益。
ADS-B 自动相关监视 – 广播式 AH 抽象层次结构 AOIS 航空运行信息系统 AR 增强现实 A-SMGCS 先进地面运动引导和控制系统 ATC 空中交通管制 ATCO 空中交通管制操作员 ATCR 空中交通管制雷达 ATM 空中交通管理 COO 协调员 CTOT 计算的起飞时间 CWP 管制员工作位置 DEL 交付 DTD 接地距离 EID 生态界面设计 EOBT 预计起飞时间 ER 探索性研究 ETOT 预计起飞时间 FDP 飞行数据处理 FOV 视场 GGV 注视、手势、语音 GND 地面 HDE 低头设备 HMD 头戴式显示器 ICAO 国际民用航空组织 IFR 仪表飞行规则 IHP 中间等待点 ILS 仪表着陆系统 IMC 仪表气象条件 JU 联合承诺 LOC 航向道 LVP 低能见度程序 OOT 离开塔台 PP 伪飞行员 PSR 主监视雷达雷达无线电探测和测距