不仅包括隐性偏见或个人歧视,还包括鼓励和助长这种歧视的规则和实践结构。1 结构性种族主义的一个定义是“社会通过相互加强的住房、教育、就业、收入、福利、信贷、媒体、医疗保健和刑事司法系统助长种族歧视的全部方式”。3 衡量种族主义具有挑战性。它不仅可能是主观的,而且还可能带有政治色彩,并且基于难以收集的数据。尽管如此,为了监测变化和设定目标,有一个可衡量的结果至关重要。出于这个原因,出现了许多衡量种族主义的方法,包括感知歧视量表。3
● 该视频在 YouTube 上,许多地方当局和学校都屏蔽了它。在讲课之前,请确认您可以访问。 ● 该视频提到了 Facebook,许多学习者可能不会使用它。在播放视频之前,请解释他们在视频中看到的技巧适用于所有社交媒体平台,例如 Instagram、YouTube 和其他网站。您可能还想提到 Facebook 拥有 Instagram,因此同样的原则也适用!
在这项工作中,我们使用噪声中尺度量子 (NISQ) 框架,获得了 Bardeen-Cooper-Schrieffer (BCS) 哈密顿量的间隙。这可能会对超导研究产生有趣的影响。对于这样的任务,我们选择使用变分量子压缩并分析在当前量子硬件上找到能谱所需的硬件限制。我们还比较了两种不同类型的经典优化器,即线性近似约束优化 (COBYLA) 和同时扰动随机近似 (SPSA),并研究在实际设备中使用模拟时噪声存在引起的退相干的影响。我们将我们的方法应用于具有 2 和 5 个量子比特的示例。此外,我们展示了如何在一个标准差内近似间隙,即使存在噪声。
恶性黑色素瘤是皮肤癌最具侵略性的形式,其特征是不可预测的生长模式,尽管采用了各种治疗方法,但在最近几十年中,其死亡率仍然令人震惊。改善黑色素瘤患者结局的一种有希望的策略在于早期使用生物标志物来预测预后。生物标志物提供了一种方法来衡量疾病课程初期的患者观点,促进及时,有针对性的干预。近年来,鉴于肿瘤的高免疫原性和对免疫治疗的潜在反应性,已经对免疫反应在黑色素瘤中的作用非常关注。研究人员致力于通过检查肿瘤微环境(TME)中的癌细胞生物学和免疫相互作用来识别预测性生物标志物。这种方法揭示了肿瘤 - 纤维淋巴细胞(TILS),这是一种在肿瘤中发现的一种免疫细胞。tils已成为一个有前途的研究领域,因为它们有潜力既是黑色素瘤的预后指标和治疗靶标。黑色素瘤组织中的tils的存在通常可以表明对癌症的阳性免疫反应,许多研究表明TIL可以改善患者的预后。本综述深入研究了黑色素瘤中TIL的预后价值,评估了这些免疫细胞如何影响患者的结果。它探讨了TILS与黑色素瘤细胞相互作用的机制以及利用TIL在治疗策略中的潜在临床应用。虽然tils提出了预后和治疗的充满希望的途径,但仍然存在挑战。这些包括了解TME内的TIL动力学的全部程度以及基于TIL的疗法的克服局限性。直到表征方法的进步对于重新填充基于TIL的方法也至关重要。通过解决这些障碍,以TIL为重点的研究可能为改善诊断和治疗方案铺平了道路,最终为黑色素瘤患者提供了更好的结果。
简介:在克里唑替尼和alectinib中,已批准了几种肿瘤淋巴瘤激酶(ALK) - 抑制剂(ALKI)(ALKI)用于治疗ALK转移的晚期或转移性非小细胞肺癌(NSCLC)。这迫使医生根据肿瘤的遗传学作用选择最合适的化合物,但也要在毒性和潜在的辅助处理方面选择。可能将靶向疗法与免疫疗法结合或之后,这强调了获得有关这些抑制剂潜在免疫调节作用的详细知识的重要性。我们在这里的目的是1。)确定ALKI是否对人类树突细胞(DC)表现出免疫抑制作用,作为抗原特异性免疫的重要介体和2。)剖析这种免疫抑制在ALKI之间是否有所不同。
微结构或纳米结构会引起衍射、干涉和散射。[3] 以这种方式产生的结构色通常与角度有关(彩虹色),与光吸收产生的颜色相比,结构色更鲜艳、可调且稳定。[4] 到目前为止,已有多种光子结构被用于产生结构色并取代传统的色素沉着。这些包括可调高折射率光子玻璃、微米级球形胶体组件和衍射光栅结构。[5,6] 虽然仿生光子结构已被用于创造高度饱和的结构色,但它们制造困难且成本高,不适合大规模生产。此外,整个可见光谱范围内对新的仿生结构色的需求尚未得到满足。因此,更好地理解结构着色的潜在机制无疑将改善颜色特性和寿命。虽然自然界中存在大量结构色的例子,但由于蝴蝶翅膀的光子纳米结构颜色鲜艳,因此人们对其的研究兴趣颇多。[7,8] 例如,Vigneron 等人发现,Pierella luna(月神蝴蝶)翅膀鳞片产生的彩虹色效应是由整个鳞片的宏观变形引起的,当翅膀被白光照射时,就像衍射光栅一样分解
方法:用于对ONFH患者和健康对照组中的mRNA表达训练进行仔细检查,其数据整合来自GEO数据库。de mRNA。通过基因和基因组(KEGG)途径富集分析,基因本体论(GO)功能分析以及基因集富集分析(GSEA)的基因和基因组(KEGG)途径富集分析,基因和基因组百科全书(GSEA)探索了DE mRNA的生物学功能。此外,支持向量机 - 递归特征消除(SVM-RFE)和最低绝对收缩和选择操作员(Lasso)(Lasso)被用来辨别与该疾病相关的诊断生物标志物。接收器操作特征(ROC)分析用于评估特征基因的统计性能。使用QRT-PCR在从ONFH患者和健康对照组中获得的骨组织中进行关键基因的验证。成骨分化,以验证关键基因与成骨分化之间的相关性。最后,执行免疫细胞进行锻炼分析以评估ONFH中的免疫细胞失调,同时探索免疫细胞内效率与关键基因之间的相关性。
空客制造的 SpainSat NG-I 卫星成功发射 图卢兹,2025 年 1 月 30 日——空客制造的两颗新一代 SpainSat 卫星中的第一颗 SpainSat NG-I 已成功搭载猎鹰 9 号火箭从美国卡纳维拉尔角发射升空。该卫星由 Hisdesat 为西班牙武装部队运营,是欧洲最先进的安全通信卫星,在 UHF、Ka 和 X 波段运行,将在初步测试和调试后于 2025 年下半年投入地球静止轨道使用。空中客车防务与航天公司空间系统负责人阿兰·福雷表示:“SpainSat NG-I 采用了我们业界领先的 Eurostar Neo 平台支持的尖端安全通信技术,它的发射是西班牙和欧洲主权迈出的重要一步。它的创新有效载荷占卫星的 45% 以上,是在空客牵头的西班牙航天工业的共同努力下开发的。”
开发了使用粒子滤波器(递归蒙特卡罗方法)解决定位、导航和跟踪问题的框架。提出了一种粒子维度简约的通用算法。汽车和航空应用从数字上说明了与基于卡尔曼滤波器的传统算法相比的优势。这里使用非线性模型和非高斯噪声是准确度提高的主要原因。更具体地说,我们描述了如何使用地图匹配技术将飞机的海拔剖面图与数字海拔地图进行匹配,将汽车的水平行驶路径与街道地图进行匹配。在这两种情况下,都可以实时实现,测试表明,其准确度可与卫星导航(如 GPS)相媲美,但完整性更高。基于模拟,我们还讨论了粒子滤波器如何用于基于手机测量的定位、飞机的综合导航以及飞机和汽车的目标跟踪。最后,粒子滤波器为导航和跟踪的组合任务提供了一个有希望的解决方案,这在空中搜寻和汽车防撞上都有所体现。