生物学入侵正在影响全球生物多样性,生态系统和社会经济。海洋非土著物种(MNIS)可以通过人类活动(例如海上运输和粗心丢弃水族馆物种)引入。尽管为防止引入MNI的努力做出了重大努力,但仍会出现事件,包括紫s,甲壳类动物,沿海,anthozoans,bryozoans,bryozoans,sponges,acraalgae,acroalgae,seagrasses and Mangroves(Alidoost Salimi Salimi等,2021)。一旦MNI在接收者地区建立,控制和消除它们就成为一项艰巨的任务。早期对MNIS的认识可以提高早期反应的有效性,特别是在引入阶段,这对于减少MNIS的影响至关重要。因此,必须在成功建立新栖息地并对当地生物多样性构成威胁之前,制定可靠且具有成本效益的策略来对MNI的早期发现进行早期检测。公众在海洋保护中扮演着重要角色(EARP和LICONTI,2020年),例如检测和监视Acanthaster SPP的爆发和监测。(Dumas等,2020),以及管理侵入性狮子弯曲势力(Clements等,2021)。为了监视MNIS的存在,已采取行动来帮助公众熟悉并有效地认识这些物种,例如使用手表清单和指南。然而,由于海洋物种的生物多样性,准确识别标本
卷积神经网络(CNN)在培训数据集代表预期在测试时遇到的变化时,可以很好地解决监督学习问题。在医学图像细分中,当培训和测试图像之间的获取细节(例如扫描仪模型或协议)之间存在不匹配和测试图像之间的不匹配时,就会违反此前提。在这种情况下,CNNS的显着性能降解在文献中有很好的记录。为了解决此问题,我们将分割CNN设计为两个子网络的串联:一个相对较浅的图像差异CNN,然后是将归一化图像分离的深CNN。我们使用培训数据集训练这两个子网络,这些数据集由特定扫描仪和协议设置的带注释的图像组成。现在,在测试时,我们适应了每个测试图像的图像归一化子网络,并在预测的分割标签上具有隐式先验。我们采用了经过独立训练的Denoising自动编码器(DAE),以对合理的解剖分段标签进行模型。我们验证了三个解剖学的多中心磁共振成像数据集的拟议思想:大脑,心脏和前列腺。拟议的测试时间适应不断提供绩效的改进,证明了方法的前景和普遍性。对深CNN的体系结构不可知,第二个子网络可以使用任何分割网络使用,以提高成像扫描仪和协议的变化的鲁棒性。我们的代码可在以下网址提供:https://github.com/neerakara/test- time- aptaptable-neural-near-netural-netural-networks- for- domain-概括。
想象力,基于模型的推理和决策的神经基础对神经科学产生了很大的兴趣[5-7];在认知水平上,在动物和人类学习中已经假设并证明了模型学习和心理模拟[8-11]。其在基于人工模型的代理中的成功部署迄今已仅限于可用的确切过渡模型[12]或模型易于学习的域中的设置,例如符号环境或低维系统[13 - 16]。在代理无法使用模拟器的复杂域中,最近的成功由无模型方法主导[2,17]。在此类域中,采用标准计划方法的基于模型的代理的性能通常会遭受功能近似作用的模型错误[18,19]。这些错误在计划过程中复合了,导致过度优势和剂性能差。当前没有计划
1 IBM 欧洲研究中心,瑞士苏黎世 2 苏黎世联邦理工学院生物系统科学与工程系,瑞士苏黎世 3 IBM 阿尔马登研究中心,美国加利福尼亚州圣何塞 4 视觉放射学,美国德克萨斯州达拉斯 5 犹他大学健康科学中心放射学和影像科学系,美国犹他州盐湖城 6 塞顿医学中心放射学系,美国加利福尼亚州戴利城 7 阿苏塔医学中心放射学系,以色列特拉维夫 8 本·古里安大学医学院,以色列贝尔谢巴 9 耶路撒冷希伯来大学医学院哈达萨-希伯来大学医学中心放射学系,以色列耶路撒冷 10 盖伊和圣托马斯 NHS 基金会皇家布罗姆普顿和哈里菲尔德医院,英国伦敦 11 切尔西和威斯敏斯特医院,英国伦敦 12 伦敦帝国理工学院国家心肺研究所,英国伦敦 13 布鲁内尔大学健康、医学与生命科学学院伦敦,英国伦敦 14 IBM 海法研究中心,以色列海法 15 耶路撒冷希伯来大学医学院,以色列耶路撒冷 *通信地址:jab@zurich.ibm.com (JB),beymer@us.ibm.com (DB) https://doi.org/10.1016/j.patter.2021.100269
活细胞需要能量,有些细胞比其他细胞需要更多能量。有些细胞的代谢率在几秒钟内从最小变为最大,而有些细胞则是无底洞,需要无节制地持续供应能量。能量底物和氧气的供应以及代谢废物的清除是通过复杂的血管网络来维持的,富含葡萄糖的血浆和充满氧气的红细胞 (RBC) 就是通过血管网络运输的。能量代谢的变化是诊断和监测组织疾病的常用指标,这一事实进一步强调了深入了解能量供应的重要性。大脑也不例外,但它有许多特殊功能和未解之谜。能量需求大约比身体每体积的平均能量需求高出一个数量级。最重要的是,由于大脑的能量储存能力有限,因此必须持续供应氧气和葡萄糖。供应中断几分钟就会对脑细胞造成不可逆转的损害。因此,大脑使用复杂的调节系统来控制其能量供应,该系统涉及壁细胞以及神经元和神经胶质细胞。更清楚地了解单个血管和整个脉管系统水平的血流变化对于揭示这个相互关联的系统如何协调其适应性至关重要。在 PNAS 中,Meng 等人 (1) 介绍了一种强大的超快速方法来改善微血管网络中脑血流的体内测量,这将大大提高双光子显微镜在量化微血管灌注方面的适用性。尽管自 19 世纪末以来我们就知道大脑会局部调节血流以满足局部能量需求的增加 (2, 3),但潜在的血液动力学过程以及细胞间和细胞内的信号通路仍然很大程度上未被发现(有关最近的综述,请参阅参考文献 4 和 5)。并且,在当前背景下需要强调的是,允许以高空间和时间分辨率测量血流的方法有限,但它们对于产生对血液调节微血管方面的新见解至关重要。由于其重要性,研究人员不断开发和应用各种方法来测量脑血流。这些方法基于不同的模式,例如放射性标记扩散化合物、氢扩散和微电极技术、磁共振成像、光谱、光学相干断层扫描、激光散斑成像,以及最近的聚焦超声和光声成像。其中一些方法已达到黄金标准地位,而其他方法则从地图上消失了。1998 年,Kleinfeld 等人 (6) 引入双光子显微镜来追踪单个红细胞。在接受静脉注射荧光葡聚糖以染色血浆的麻醉小鼠中,通过毛细血管短段的千赫兹线扫描来量化位移
识别与治疗反应和治疗性变化的假定机制相关的个体差异因素可能会改善对强迫症(OCD)的治疗。我们对心理疗法的结构神经影像学标记(即形态计量学,结构连通性)和OCD的药物治疗反应的系统综述26符合条件的出版物(平均研究总计n = 54±41.6 [范围:11-175] [范围:11-175]; OCD组n = 29±19±19±19),以及成人的脑海中,以及成人的脑海中,成人的脑海中,成人的脑海中,适用于Adection n = 29±19)。作为与治疗相关的大脑结构变化。研究结果在整个研究中不一致。前扣带回皮层内(3/5区域,2/8全脑研究)和眶额皮层(5/10区域,2/7全脑研究)中的显着关联是最常见的,但后期性和方向性并不总是一致的。治疗反应的结构性神经影像学标记当前不具有临床实用性。给出越来越多的证据表明,复杂行为与大脑结构之间的关联的特征是小但有意义的效果,可能需要更大的样本。多元方法(例如机器学习)也可以改善神经影像数据的临床预测效用。
亲爱的编辑,我们最近在《转化精神病学》上发表了一篇文章,探讨了在全脑水平上评估脑功能的策略 [1]。在这篇评论中,我们介绍了几种方法,从功能性磁共振成像到功能性超声再到钙成像。对于每一种技术,我们都简要介绍了它的发展历史、物理概念、一些关键应用、潜力和局限性。我们得出的结论是,在网络水平上对啮齿动物大脑进行成像的方法正在不断发展,并将增进我们对大脑功能的理解。Zhuo 和同事的一篇评论进一步增加了解决精神病学学科从动物模型到患者的“转化”问题的复杂性 [2]。他们提出,需要彻底审查用于开发精神疾病动物模型的方法,甚至可能需要修改。例如,迄今为止,大多数精神疾病的啮齿动物模型都是使用简单的药物输注 [3] 和/或社会心理刺激 [4] 建立的。然而,关键问题是这些操作如何改变大脑的结构和功能,以及这些模型是否真正反映了人类精神疾病的病理生理学。特别是因为很难评估是否可以说从啮齿动物到人类存在逆向推理。这是一个真实且可以接受的说法。然而,这正是临床前成像旨在实现的。通过绘制动物模型中大脑网络的动态响应,并将其(如果可能)与临床研究中报告的响应进行比较,我们可以获得定量数据和参数,以确定我们的模型是否有效转化 [ 5 ]。如果这些指标表明网络级修改在时间和空间上与在人类中观察到的相似,我们可以利用更具侵入性和更具体的方法来进一步研究动物模型中的大脑记录。否则,我们必须有信心和正确性继续前进并尝试其他解决方案。最近有两个例子。 2019 年,我们证实了小鼠蓝斑核 (LC) 去甲肾上腺素能活性与大量大型脑网络(尤其是突显网络和杏仁核网络)的参与之间存在因果关系 [6]。此外,我们还可以将网络变化与去甲肾上腺素 (NE) 周转的直接标志物以及 NE 受体在整个脑部的分布联系起来。特定脑网络动态与 LC 活性和 NE 受体密度相关的假设源自人类压力研究和药理学研究 [7,8]。然而,由于不可能选择性地刺激人类的 LC,因此十多年来,这一假设一直只是一个假设。
深度学习方法有可能减轻放射科医生处理繁琐的,耗时的任务,例如检测和细分病理病变[1],但是在医学成像的背景下对神经网络的培训面临着主要的挑战:它们需要训练大量图像,因为这是很难获得的,因为在许多方面都可以限制医疗信息,并且由于许多方面的范围限制了其他方面的范围。此外,虽然在世界各地的医院数据库中可以提供相对较大的医学图像,但这些图像是未标记的,并且不同的机构以派遣和不均匀的方式保存医疗图像,这使得它们在较大的数据库中收集它们。在这种情况下,从头开始生成医学图像的方法可能引起人们的极大兴趣。生成建模是机器学习的一个子字段,它在产生新的高质量自然图像(例如面部照片[2])方面具有令人印象深刻的精力[2],并应用于语音综合[3]和磁共振图像重建等任务[4]。如果可以教导生成模型来产生现实且多样化的新医学图像,那么它们将具有很有吸引力的潜力,可以显着增加可用于深神经网络培训的图像数量,因此可以帮助提高这些网络的准确性[5-7]。