收到:2023年9月18日;接受:2023年12月25日摘要通过听觉,视觉和文本提示识别多方面情绪的研究是一个快速发展的跨学科领域,涵盖了心理学,计算机科学和人工智能领域。本文研究了用于隔离和识别这些模式中复杂情绪状态的方法的范围,目的是描述进步并确定未来研究的领域。在声音领域中,我们探索了信号处理和机器学习技术的进展,从而有助于从人声弯曲和音乐安排中提取细微的情感指标。视觉情绪识别是通过面部识别算法,肢体语言分析以及上下文环境信息整合的有效性来评估的。使用自然语言处理技术检查基于文本的情感识别,以感知书面语言的情感和情感内涵。此外,本文考虑了这些不同情绪数据来源的融合,考虑了构建能够解释多模式输入的连贯模型时所面临的挑战。我们的方法涵盖了最近研究的荟萃分析,评估了各种方法的有效性和精度,并确定了常见的指标进行评估。结果表明,偏爱深度学习和混合模型,以利用多种分析技术的优势来提高识别率。然而,诸如情感的主观性质,表达中的文化差异以及广泛的注释数据集的必要性持续存在的挑战,这是重大障碍。总而言之,这篇综述倡导了更多细微的数据集,增强的跨学科合作以及一个道德框架来管理情绪识别技术的实施。这些技术的潜在应用是广泛的,从医疗保健到娱乐,并且需要一致的努力来完善和道德将情感识别纳入我们的数字互动中。关键字:多模式情绪,融合,机器学习,深度学习,回归,CNN,RNN。
开发X射线设备,用于评估,评估图像质量以及质量保证计划所需的物理乳房幻像。理想情况下,这样的幻象应反映乳房的物理特征。首先,组成材料必须具有与乳房组织相同的X射线衰减特性。其次,所使用的幻象应反映实际器官的解剖特征,例如剪影,组成组织的3D分布和变异性(1,2)。所需的解剖现实主义可以源自具有专用乳房计算机层析成像(BCT)扫描仪(2,3)的临床图像,其空间分辨率相对较高。但是,这种方法受到从BCT扫描仪获得的临床乳房图像的全球稀缺限制(4-6)。相反,利用磁性
1 ENSTA B RETAGNE , UMR CNRS 6027, IRDL, F-29200 B REST , F RANCE 2 V IBRACOUSTIC – CAE D URABILITY P REDICTION D EPARTMENT , 44474 C ARQUEFOU , F RANCE 3 N ANTES U NIVERSITÉ , E COLE C ENTRALE N ANTES , CNRS, G E M, UMR 6183, F-44000 N ANTES , F rance摘要弹性材料的特性受到成分和详细过程所产生的夹杂物的强烈影响。提出了一种方法,以根据其化学性质区分弹性体中对疲劳有害(大于几µm)的夹杂物,并使用足够的统计数据进行定量表征它们。使用三种技术并进行了比较:数字光学显微镜(OM),与能量分散X射线光谱相关的扫描电子显微镜(SEM)和X射线微计算机层析成像(µ-CT)。六种材料用于挑战该方法。除了通常的金属氧化物和碳黑色附聚物外,突出显示了三种非典型夹杂物,从而产生了特定的检测困难。与经典的阈值方法相比,开发了一个相关的图像分析过程,以自动和准确地检测获得的图像的包含物。不同夹杂物种群的形态和空间分布。µ-CT是包含物的分类和统计表征的最全面,最准确的方法。此外,可以使用反向散射电子(SEM-BSE)或数字OM获得有关包含物尺寸分布的相关数据。SEM-BSE比数字OM提供了更准确的结果。简介橡胶部分的性能与化合物中成分的分散质量有关。该分散剂取决于所用的成分以及详细过程(混合,注射和固化)1。用于橡胶零件的典型成分包括碳黑色(CB)或二氧化硅填充剂和ZnO。对成分的良好分散对于获得均匀的混合物,良好的机械性能以及批处理和批处理之间的性质的一致性很重要。此外,夹杂物和团聚物在这些材料的机械性能中起关键作用。例如,疲劳损伤通常以CB的聚集体2或在二氧化硅聚集体3或金属氧化物2,4处引发。因此,重要的是能够表征填充物分散体和橡胶化合物中的夹杂物。的确,这种分散在空间和大小上的知识允许检查混合物的质量,优化过程参数,并在微观结构和感兴趣的属性之间建立链接。*通讯作者。matthieu.le_saux@ensta-bretagne.fr在文献中已经提出了许多技术,以分析橡胶材料中成分(基本上是CB)的微或宏分散因素:•通过透射光学显微镜(OM)5,6的材料(厚度上的几微米至几千微米)观察材料的材料(厚度几英尺)的效果。观察到的较暗和较明亮的区域分别对应于CB团聚物,并在切割过程中脱离了聚集体;该方法在1960年代被用作标准(ASTM D-2663方法B)。
用于生物图像分析的软件工具往往被视为解决问题的实用程序。这样的极端版本就像:“如果我知道在哪里单击,我可以获得好结果!”。如果使用游戏软件,则用户越来越习惯该软件,用户可以更快地实现最终阶段。在某种程度上,生物图像分析软件也可能是正确的,但是有很大的差异。作为生物图像分析是科学研究的一部分,要实现的目标不是要清除每个人都迈向的共同最后阶段,而是其他人尚未发现的原始阶段。使用生物图像分析软件的难度不仅存在于隐藏命令中,而且还存在于用户需要提出更多或不超级的原始分析的事实。那么,我们如何使用公共提供的工具来做一些原始的操作?在本简短的章节中,我们定义了描述生物图像分析软件世界的几个术语,这些术语是“工作流”,“组件”和“集合”,并解释其关系。我们认为,澄清这些术语的定义可以在很大程度上为那些想要学习生物形象分析的人以及需要设计生物图像分析教学的人。原因是这些术语将公开提供的软件包的通用性与一个人需要实现的分析的特殊性和独创性联系起来。
数字信息的指数增长需要超越传统全文加密方法的高级加密机制。高级加密标准(AES)为确保数字资产提供了强大的框架,并提供了多个关键长度(128、192和256位),并具有不同的加密回合。
了解神经系统的功能需要绘制其由功能,解剖学或基因表达定义的其组成细胞的空间分布。最近,组织制备和显微镜的发展使整个啮齿动物大脑都可以成像细胞种群。但是,手动映射这些神经元很容易偏见,并且通常不切实际。在这里,我们提出了一种开源算法,用于使用标准台式计算机硬件在鼠标全脑显微镜图像中完全自动化的3D检测神经元somata。我们通过绘制通过通过逆行反式突触病毒感染表达的细胞质荧光蛋白标记的大型细胞的大脑范围来证明我们方法的适用性和功能。
图1:来自临床数据仓库和Correponding标签的T1W脑图像的示例。a1:质量高的图像(第1层),没有gadolinium; A2:质量高(第1层),带有Gadolinium; B1:中等质量(第2层),没有Gadolinium(噪声1级); B2:中等质量(第2层),带有Gadolinium(对比1级); C1:不良质量(第3层),没有gadolinium(对比2级,运动2级); C2:不良质量(第3层),gadolinium(对比2级,运动级1级); D1:笔直排斥(分段); D2:直接拒绝(裁剪)。
在获取磁共振(MR)图像中,较短的扫描时间会导致更高的图像噪声。因此,使用深度学习方法自动图像降解是高度兴趣的。在这项工作中,我们集中于包含线状结构(例如根或容器)的MR图像的图像。特别是,我们研究了这些数据集的特殊特征(连接性,稀疏性)是否受益于使用特殊损失功能进行网络培训。我们特此通过比较损失函数中未经训练的网络的特征图将感知损失转换为3D数据。我们测试了3D图像降级的未经训练感知损失(UPL)的表现,使MR图像散布脑血管(MR血管造影-MRA)和土壤中植物根的图像。在这项研究中,包括536个MR在土壤中的植物根和450个MRA图像的图像。植物根数据集分为380、80和76个图像,用于培训,验证和测试。MRA数据集分为300、50和100张图像,用于培训,验证和测试。我们研究了各种UPL特征的影响,例如重量初始化,网络深度,内核大小以及汇总结果对结果的影响。,我们使用评估METIC,例如结构相似性指数(SSIM),测试了四个里奇亚噪声水平(1%,5%,10%和20%)上UPL损失的性能。我们的结果与不同网络体系结构的常用L1损失进行了比较。我们观察到,我们的UPL优于常规损失函数,例如L1损失或基于结构相似性指数(SSIM)的损失。对于MRA图像,UPL导致SSIM值为0.93,而L1和SSIM损耗分别导致SSIM值分别为0.81和0.88。UPL网络的初始化并不重要(例如对于MR根图像,SSIM差异为0.01,在初始化过程中发生,而网络深度和合并操作会影响DeNo的性能稍大(5卷积层的SSIM为0.83,而核尺寸为0.86,而5卷积层的0.86 vs. 0.86对于根数据集对5卷积层和5卷积层和内核尺寸5)。我们还发现,与使用诸如VGG这样的大型网络(例如SSIM值为0.93和0.90)。总而言之,我们证明了两个数据集,所有噪声水平和三个网络体系结构的损失表现出色。结论,对于图像
MariskaBrüls,Sanam Foroutanparsa,ThéoMerland,C。ElizabethP. Maljaars,Maurien M.A. ol- Sthoorn等。多糖对GDL酸化的牛奶凝胶中蛋白网络形成的影响的定量图像分析。 食品结构,2023,38,pp.100352。 10.1016/j.foostr.2023.100352。 hal-04238300MariskaBrüls,Sanam Foroutanparsa,ThéoMerland,C。ElizabethP. Maljaars,Maurien M.A.ol- Sthoorn等。多糖对GDL酸化的牛奶凝胶中蛋白网络形成的影响的定量图像分析。食品结构,2023,38,pp.100352。10.1016/j.foostr.2023.100352。hal-04238300
摘要:贫困是一个复杂的社会经济问题,影响了全世界数百万的人。分配和导致贫困的因素对于有效的决策,资源分配和有针对性的干预措施至关重要。卫星成像技术和深度学习技术的出现在该领域开辟了新的可能性。本研究旨在探索使用深度学习和卫星图像来预测地区贫困水平的潜力。这项研究的主要重点是培训RNN模型,以学习卫星图像与财富指数之间的复杂关系。该系统成功证明了利用卫星图像来预测各个地区城市财富指数的能力。数据可用性和质量,计算资源和监管约束仔细管理,以确保系统的可靠性和有效性。这项研究证明了利用卫星图像和深度学习技术的可行性和有效性。它有助于数据驱动的贫困分析领域,并为在区域和全球规模上理解和解决贫困提供了有价值的工具。