hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
动力学运动图像(KMI)在运动皮层(称为事件相关的(DE) - 同时化,ERD/ERS)上产生特定的脑模式,使KMI可以通过电脑范围(BCI)通过电脑(EEGEEG)信号来检测到KMI。由于执行KMI任务会刺激突触可塑性,因此基于KMI的BCIS对许多需要长期KMI实践的应用(例如,运动训练或中风后康复)有望。但是,缺乏对基于KMI的BCI相互作用的研究,尤其是关于人际因素与运动模式变化之间的关系。这项试验研究旨在更好地理解给定个人的脑运动模式如何随着时间的流逝而变化,(ii)人际因素是否可能影响BCI实践,以及(iii)BCI用户的经验会随着时间的推移调节KMI任务(即ERDS和ERS)的脑运动模式。为此,我们在这项心理任务中招募了一名专家,他在五个月的时间内在26个不同的课程中进行了2080公里的时间。这项研究的原始性在于对来自EEG信号,BCI数据性能和13个不同调查的交叉引用数据的详细检查。结果表明,这种重复和延长的实践并没有减少他的福祉,尤其是对任务的自动化感。,我们观察到随着会话的积累,ERD振幅的进行性衰减和运动区域的浓度。所有这些元素都指向神经效率的现象。情绪,任务控制,饮食等)如果通过其他研究确认,这种现象可能会质疑BCI在向用户提供持续刺激时的质量。此外,这项试验研究的结果表明了可能影响运动皮层反应的洞察力(例如,和有希望的改善旨在长期使用的BCI的教学设计的机会。
平板扫描仪已成为高分辨率,单像材料捕获的有前途的设备。但是,现有方法假设非常具体的条件,例如均匀的弥散照明,仅在某些高端设备中可用,从而阻碍其可扩展性和成本。相比之下,在这项工作中,我们引入了一种受固有图像分解启发的方法,该方法可以准确地消除阴影和镜面性,从而有效地允许使用任何平板扫描仪捕获。此外,我们以不透明和透射率的估计,全材料外观(SVBSDF)的关键成分(SVBSDF)的估计来探讨了单位材料反射捕获的先前工作,以非常高的分辨率和准确性改善了用平板扫描仪捕获的任何材料的结果。©2025 Elsevier B.V.保留所有权利。
拥有超过4000万个付款设备在全球部署的付款设备,由超过2500个应用程序提供支持,该公司每天都在满足数百万消费者的需求。通过我们先进的集成解决方案和合作伙伴网络,我们简化了付款世界,并带来了增值服务以推动商业发展。
聚合物复合材料在我们的日常生活中无处不在,因为它们的功能/机械性能[1],这种材料的机械性能是由构成结构[2]的纳米级/显微镜特征所支持的,并且在此主题上有一些出色的评论[3-7]。传统的机械测试方法获取有关聚合物及其复合材料的宏观物理特性的信息,重要的是要注意,可能会错过有关这些材料中存在的纳米级/微观结构的贡献的信息[8],并且在分析生物学样本(尤其是用于评估细胞机械的方法)方面存在重大兴趣。多尺度结构和宏观特性的相关性是当前分析研究的一个领域[10,11];可以采用各种不同的实验室和计算技术来理解
聚合物复合材料在我们的日常生活中无处不在,因为它们的功能/机械性能[1],这种材料的机械性能是由构成结构[2]的纳米级/显微镜特征所支持的,并且在此主题上有一些出色的评论[3-7]。传统的机械测试方法获取有关聚合物及其复合材料的宏观物理特性的信息,重要的是要注意,可能会错过有关这些材料中存在的纳米级/微观结构的贡献的信息[8],并且在分析生物学样本(尤其是用于评估细胞机械的方法)方面存在重大兴趣。多尺度结构和宏观特性的相关性是当前分析研究的一个领域[10,11];可以采用各种不同的实验室和计算技术来理解
在细胞的监督分类中优化特征提取和分类器的组合组合Xhoena polisi duro 1,2*,Arban UKA 2,Griselda alushllari 2,Albana Ndreu Halili 3,Dimitrios A. Karras A. Karras A. Karras 2,Nihal Engin vrana vrana 4 1 Informatics obs s. noli oblia,“ fan nori”,koria,koria,koria,korica,korica,korica,korka,korka,“ korcua”。 xpolisi@epoka.edu.al(X.P.D.)。2埃波卡大学计算机工程系,阿尔巴尼亚蒂拉纳市; auka@epoka.edu.al(a.u.)galushllari@epoka.edu.al(G.A。)dkarras@epoka.edu.al(d.a.k.)3西巴尔干大学医学系,阿尔巴尼亚提拉娜; albana.halili@wbu.edu.al(a.n.h。) 4法国斯特拉斯堡的Spartha Medical; evrana@sparthamedical.eu(N.E.V.) 摘要:医学领域的发展已经开放了在个性化患者层面进行分析的机会。 可以进行的重要分析之一是对工程材料的细胞反应,最合适的非侵入性方法是成像。 这些细胞的图像是未染色的Brightfield图像,因为在存在生物材料和流体的情况下,它们是从多参数微流体室获取的,这些室可能会随着时间的流逝而改变光路的长度,因为细胞的健康状态被监测。 这些实验条件导致具有独特照明,纹理和噪声频谱的图像数据集。 本研究通过将特征提取体系结构和机器学习分类器结合起来,探讨了监督细胞分类的优化,并重点介绍了生物材料风险评估中的应用。 1。 简介3西巴尔干大学医学系,阿尔巴尼亚提拉娜; albana.halili@wbu.edu.al(a.n.h。)4法国斯特拉斯堡的Spartha Medical; evrana@sparthamedical.eu(N.E.V.)摘要:医学领域的发展已经开放了在个性化患者层面进行分析的机会。可以进行的重要分析之一是对工程材料的细胞反应,最合适的非侵入性方法是成像。这些细胞的图像是未染色的Brightfield图像,因为在存在生物材料和流体的情况下,它们是从多参数微流体室获取的,这些室可能会随着时间的流逝而改变光路的长度,因为细胞的健康状态被监测。这些实验条件导致具有独特照明,纹理和噪声频谱的图像数据集。本研究通过将特征提取体系结构和机器学习分类器结合起来,探讨了监督细胞分类的优化,并重点介绍了生物材料风险评估中的应用。1。简介分析了三种细胞类型(A549,BALB 3T3和THP1)的Brightfield显微镜图像,以评估Inception V3,Squeeze Net和VGG16架构与分类器与包括KNN,决策树,随机森林,Adaboost,Adaboost,Neural Networks和Natan bayes的分类器配对的影响的影响。使用信息增益降低维度,以提高计算效率和准确性。使用不同参数的Butterworth过滤器用于平衡图像特征和降噪的增强,从而在某些情况下提高了分类性能。实验结果表明,与神经网络配对时,VGG16体系结构可实现通过不同指标衡量的更高分类精度。与未经过滤的数据集相比,使用Butterworth过滤器时的精度提高了,并且各种Butterworth滤波器之间的差异表明了优化这些类型图像的过滤器参数的重要性。关键字:生物材料风险评估,细胞图像分类,分类器,特征提取,个性化医学,监督分类。
“美国国家老龄研究所支持的研究发现,适度的饮食和药物干预可以使动物寿命延长 25%”,约翰逊说。“所以,问题是,在延长的寿命中,它们的大脑是否完好无损?它们还能玩填字游戏吗?即使寿命延长了 25%,它们还能玩数独吗?我们现在有能力研究这个问题。当我们这样做时,我们可以将其直接转化为人类的情况。”
1 4 4 4 4 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 51 4 4 4 4 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
Vision Transformer(VIT)在计算机视觉领域取得了重大步骤。然而,随着模型的深度和输入图像的重新分配增加,与培训和运行的VIT模型相关的计算成本急剧上升。本文提出了一个基于CNN和Vision Trans-trans-trans的混合模型,称为CI2P-VIT。该模型包含一个称为CI2P的模块,该模块利用Compressai编码来压缩图像,然后通过一系列连接生成一系列贴片。CI2P可以替换VIT模型中的贴片嵌入组件,从而无缝集成到现有的VIT模型中。与VIT-B/16相比,CI2P-VIT具有减少到原始四分之一的自我发项层的斑块输入数量。此设计不仅显着降低了VIT模型的计算成本,而且还通过引入CNN的电感偏置特性有效地提高了模型的准确性。VIT模型的精度显着提高。在Animal-10数据集的地面上接受训练时,CI2P-VIT的准确率为92.37%,比VIT-B/16基线提高了3.3%。此外,该模型的计算操作以每秒浮点操作(FLOPS)测量,减少了63.35%,并且在相同的硬件配置上的训练速度增加了2倍。