方向绝对相干性利用复相干性函数来计算幅度平方相干性 (Carter 等人,1973 年)、相位斜率指数 (Nolte 等人,2008 年) 和虚相干性 (Nolte 等人,2004 年)。这三个指标结合起来,形成一个可靠的相干性测量指标,该指标取自它们各自的优势,而不考虑各自的弱点。该连接性指标是方向性的,可以检测体积传导,并且静态地绑定到 [-1, 1]。
我们给出了一个多项式时间量子算法,用于求解具有确定多项式模噪比的带错学习问题 (LWE)。结合 Regev [J.ACM 2009] 所示的从格问题到 LWE 的简化,我们得到了多项式时间量子算法,用于求解所有 n 维格在 ˜ Ω(n4.5) 近似因子内的决策最短向量问题 (GapSVP) 和最短独立向量问题 (SIVP)。此前,还没有多项式甚至亚指数时间量子算法可以求解任何多项式近似因子内所有格的 GapSVP 或 SIVP。为了开发一种求解 LWE 的量子算法,我们主要介绍了两种新技术。首先,我们在量子算法设计中引入具有复方差的高斯函数。特别地,我们利用了复高斯函数离散傅里叶变换中喀斯特波的特征。其次,我们使用带复高斯窗口的窗口量子傅里叶变换,这使我们能够结合时域和频域的信息。使用这些技术,我们首先将 LWE 实例转换为具有纯虚高斯振幅的量子态,然后将纯虚高斯态转换为 LWE 秘密和误差项上的经典线性方程,最后使用高斯消元法求解线性方程组。这给出了用于求解 LWE 的多项式时间量子算法。
第1章是11月的幼儿园,在四岁和五岁的孩子中产生的教室里有一个嗡嗡声,深深地沉浸在虚构的比赛中。直到最近,其中一些孩子从满意地建立单独的项目并排发展,与同龄人合作创建虚构的游戏世界。有些孩子正在用大型磁铁建造帝国大厦(图1.1),而其他孩子则在建造和重建了一个受万圣节书中启发的僵尸鬼屋。在沙桌上,打开了一个冰淇淋架,在一组大纸板箱中,一个家庭主题正在出现,或者至少要尝试。两个女孩之间的争论召集了一小群旁观者。“我说,‘我是妈妈!””朱莉娅大喊,拳头,脚踩踏。“但是你永远是妈妈!我现在是妈妈!”玛雅反驳。“我整天都是妈妈,然后你可以成为妈妈的一天!”朱莉娅决定。“你永远是妈妈。这不公平!我不再玩了,”玛雅尖叫。他们的老师劳伦(Lauren)从远处看着,观察这两个女孩是如何谈判这个问题的,试图决定他们是否需要一些教练,突然间他们的同学萨拉(Sara)进入竞争。“你为什么没有两个妈妈?”她建议。
基于共同脑电图(EEG)的非侵入性大脑 - 计算机界面(BCI)仅限于特定的仪器位点和频带。这些BCI诱导认知任务的某些目标脑电图特征,识别它们并确定BCI的性能,并使用机器学习来提取这些脑电图特征,从而使它们非常耗时。此外,存在使用BCI的神经居住的问题,无法接受卧床和立即的康复培训。因此,我们提出了一个探索性BCI,该BCI并未限制目标脑电图特征。This system did not determine the electroencephalographic features in advance, determined the frequency bands and measurement sites appropriate for detecting electroencephalographic features based on their target movements, measured the electroencephalogram, created each rule (template) with only large “High” or small “Low” electroencephalograms for arbitrarily determined thresholds (classification of cognitive tasks in the imaginary state of moving the feet by the size of由每个频段中EEG的功率谱构成的区域),并通过使用基于模糊的推理基于基于推理的模板匹配方法(FTM)来检测与在电机任务期间的规则一致的脑电图来成功检测到运动意图。但是,该BCI获得的脑电图特征尚不清楚,并且尚不清楚它们对实际脑梗塞患者的有用性。因此,这项研究清楚地表明了启发式BCI捕获的脑电图特征,并通过将其应用于脑梗塞患者的应用来确定该系统的有效性和挑战。
问题是,生活继续以与新冠疫苗问世前后相同的速度进行。生活与疫苗接种的时间完全相同,因此如果 2022 年 6 月发生一起 SADS 病例,无论是否接种疫苗都会发生。不幸的是,如果那个人恰好最近接种了疫苗,那么人们就会把想象中的点联系起来。这就是我们所做的。我们是好奇的生物,迫切希望理解这个世界的混乱。
从原子碎片到宇宙的巨大范围,恒星景观展览将空间视为一个探索性,虚构,科学,环境和政治主题,将超过二十多名国际艺术家,研究人员和工程师召集在一起,使我们通过天文学的富有想象力的旅程,并复兴了已知的新空间的太空冒险。通过艺术装置,沉浸式环境,科学创新和投机设计,我们可以体验到这种不断扩展的星光景观,这反映了宇宙连接的反映,它将我们在单个空间内绑定到所有这些事物的宇宙连接不仅与它们一样,而且可以像它们一样。
“梦想家、编辑、创造者”阶段鼓励每个人想象可能发生的事情,并通过创造来实现,进入“流动”状态(Csikszentmihalyi,1991)并以不同的方式思考。这种形式的基础是它鼓励人们有空间和时间重新发挥他们的想象力。创造性活动使想象力成为个人重要且有价值的部分,有空间和时间进行反思、联系和验证。当我们富有想象力时,我们就会解决问题,允许在非评判性空间内实施替代解决方案。在实现和制作潜在解决方案或结果的模型时,我们为参与者创造了空间,让他们参与彼此想象世界的对话。
电偶极子源已在集成光子学作为紧凑的电磁源中使用了几年,因为它们有效地耦合了光子引导模式[1,2]。最近通过利用了不同evaneScent波浪的建设性或破坏性干扰,最近证明了圆形极化电偶极子的近场方向性。[3,4]将介电或等离子波导耦合到这些圆形或椭圆形偶极子可以导致波导模式的定向激发,这是集成光子结构的有趣特征。然而,这些椭圆形电偶极子的近场仍然表现出反转对称性,如果偶极子位于倒置对称光子结构的中心,则可以去除方向性。为了恢复两个侧之间的对比属性,我们利用了平等时间对称耦合的波导的独特特性。奇偶校验时间(PT)对称性可以通过使用折射率的假想部分的平衡曲线在耦合的波导中实现,例如一种由增益材料制成的波导,另一个波导具有相等的损失。[5]这些结构的唯一性源于它们可以根据增益/损耗参数γ的值进行操作的两个方案,这些γ定义了波导中折射率的绝对想象部分。这两个方案之间的过渡发生在特殊点(EP),该点位于一定的γ值,取决于结构几何形状。在PT-对称状态(γ<γEP)中,结构的两个超模型都没有任何收益或损失,而在Pt-Orkent Orkent Orgime(γ>γEP)中,一个超级模式受益于增益和幅度爆炸,而其他经验的损失和实用型则减少。
本文认为,当代对人工智能的关注经常引入哲学问题:人类对判断是什么?要了解这个流行的虚构的前提,我们将注意力转移到了艾萨克·阿西莫夫(Isaac Asimov)的机器人法则上,这是他的科幻故事中部署的一系列法律,以创建有关人类与机器之间关系的叙述。不仅以娱乐性的观众而闻名,阿西莫夫的定律反映了关于人与技术之间关系的共同想象,渗透到科幻小说范围之外,塑造了我们对政治,人类和自由的定义背后的一些基本假设。我们的论点始于解释《故事》(1942年),《风险》(1955年),《百年纪念人》(1976年),以及基金会和地球(1986),通过伊曼纽尔·坎特(Immanuel Kant)和汉娜·阿伦特(Hannah Arendt)的审判哲学。这样做,我们指出的是,这些故事的哲学弧线写在有关谁(或什么)能够确定性和反思性判断力的紧张局势中。然后,跟随理论家通过后人类主义的角度解释了阿西莫夫的“零法”,我们认为,阿西莫夫的诉讼受到反思性判断的概念的约束,因为反思性判断本质上是人类中心的,并且仅限于封闭的系统。相比之下,我们提出了这样的论点,即仅通过分布式和偶然的系统(包括人类和非人类)出现反思性判断。那么,应保持我们的注意力的原因不是对挑战人类优势的自主人工智能的生存焦虑,而是建立和维护能够维持反思性判断的分布式形式的技术系统的政治。
几十年来,太空一直被大国和技术巨头所控制。造成这种情况的原因多种多样,但主要原因还是金钱。发射卫星或航天器的虚拟成本阻碍了许多人进入该领域。近年来,一个革命性的概念诞生了——NewSpace,它彻底改变了这个领域。发射成本的大幅降低鼓励了学术研究人员和业界开展广泛的活动。在本次会议中,我们旨在展示 New Space 和创新如何帮助实现开发和运行更强大的太空系统的全新而有效的方式。