草甘膦是一种用于破坏通常被称为杂草的除草剂。从1970年代开始,草甘膦的生产和使用在世界范围内稳步增长。到目前为止,尽管涉及风险,但这种除草剂仍在广泛使用(Cuhra等,2013)。草甘膦通过中断对植物功能必不可少的芳族氨基酸的合成而起作用(Lopes等,2018)。最近,人们对草甘膦对生物和环境的影响越来越关注(Johansson等,2018; Seide等,2018)。在这种除草剂的许多影响中是毒性,抗氧化剂活性的变化,内分泌破坏,对脂质的损害,组织学损害等。(Lopes等,2018; Ren等,2018; Lorenz等,2019)。草甘膦可以在土壤,植物和食品中作为污染物。gly在水中具有很高的溶解度,其大量使用会导致表面和地下水污染(Ruiz de Arcaute等,2018)。在各种培养基中检测草甘膦,例如色谱,光度法,
1300小时LR7,IEB摘要:电化学阻抗光谱(EIS)是一种表征电化学系统的强大非侵入性工具。 应用于锂离子电池,EIS被证明是其最先进的(SOH)的信息指标。 但是,EIS受线性和平稳性的限制限制,而锂离子电池固有地以非线性和非平稳的方式行为。 关于线性,电极上的电压是电流通过电极的非线性函数。 线性是通过在操作点上应用零均值电流激发来实现的,因此非线性函数在该范围内是准线性的。 关于时间变化,充满电和完全放电的细胞的阻抗是不同的,对于原始和老化的细胞,或在室温和冰冻环境中保持的细胞相同。 对于锂离子电池,这意味着在特定的电荷(SOC)和温度下,应以稳定状态进行EIS实验。 因此,阻抗取决于工作点(温度和SOC),线性和平稳性的限制非常限制。 最近,我们开发了Operando EIS,以揭示无法满足线性和平稳性的测量结果。 该技术允许在一个随时间变化的轨迹上测量电化学系统的阻抗,例如,在充电或排放锂离子电池时。1300小时LR7,IEB摘要:电化学阻抗光谱(EIS)是一种表征电化学系统的强大非侵入性工具。应用于锂离子电池,EIS被证明是其最先进的(SOH)的信息指标。但是,EIS受线性和平稳性的限制限制,而锂离子电池固有地以非线性和非平稳的方式行为。关于线性,电极上的电压是电流通过电极的非线性函数。线性是通过在操作点上应用零均值电流激发来实现的,因此非线性函数在该范围内是准线性的。关于时间变化,充满电和完全放电的细胞的阻抗是不同的,对于原始和老化的细胞,或在室温和冰冻环境中保持的细胞相同。对于锂离子电池,这意味着在特定的电荷(SOC)和温度下,应以稳定状态进行EIS实验。因此,阻抗取决于工作点(温度和SOC),线性和平稳性的限制非常限制。最近,我们开发了Operando EIS,以揭示无法满足线性和平稳性的测量结果。该技术允许在一个随时间变化的轨迹上测量电化学系统的阻抗,例如,在充电或排放锂离子电池时。为此,使用了非零均值随机相多电流激发,并且从电压响应的光谱中估算了沿轨迹的时间变化阻抗。
电阻抗断层扫描 (EIT) 是一种新兴的成像技术,在许多领域都具有巨大潜力,尤其是在功能性脑成像应用方面。高速、高精度的 EIT 系统可以应用于多种医疗设备,用于诊断和治疗神经系统疾病。在这项研究中,EIT 算法和硬件得到了开发和改进,以提高重建图像的准确性并缩短重建时间。由于多路复用器设计的限制,EIT 测量会受到开关周期内充电和放电的强烈电容效应,大约每 1280 个样本(10 毫秒采样)有 300 到 400 个样本。我们开发了一种算法,可以选择性地选择处于稳态的数据。这种方法提高了信噪比,并产生了更好的重建图像。我们开发了一种有效同步数据起点的算法,以提高系统速度。本演讲还介绍了基于德州仪器定点数字信号处理器 - TMS320VC5509A 的 EIT 系统硬件架构,该处理器成本低,未来在社区中具有很高的普及潜力。为了提高运行速度,我们建议 EIT 系统使用德州仪器的 Sitara™ AM57x 处理器。
综合超声和电阻抗断层扫描用于提高肾结石检测率 KR Farnham 1、EK Murphy 1 和 RJ Halter 1,2 1 塞耶工程学院,2 盖泽尔医学院,达特茅斯学院,新罕布什尔州汉诺威 引言 长期处于微重力环境中会导致脱水、淤滞和骨质脱矿,从而引发肾结石,对宇航员的健康和幸福构成严重威胁 [1]。尽早发现肾结石的形成是有益的,因为较小的结石更容易通过,而碎石术等非侵入性治疗需要先使用高对比度成像(如荧光透视、X 射线)定位结石。超声波是目前在太空中使用的成像系统,但仅用超声波检测小结石是一项具有挑战性的任务。执行深空任务的宇航员需要能够对肾结石等疾病进行成像和治疗,而无需依赖额外的造影剂或远程医疗支持,因为航天器的限制和距离使这些解决方案不可行 [2]。通过对生物电特性进行成像可以获得明显更高的对比度,因为这些特性对细胞内容、组织类型和病理很敏感,从而可以检测软组织内的结石。电阻抗断层扫描 (EIT) 是一种资源消耗少、非侵入性、非电离的技术,可产生这些电特性的图像,并能够检测一系列与空间相关的疾病(如肾结石、组织损伤、肌肉萎缩、胸腔功能、癌症存在) [3]。通过结合超声波和 EIT(US-EIT),我们可以构建高对比度图像,而无需额外的设备或专业知识,为宇航员提供一种易于使用的工具,以便在长期任务中有效监测他们的健康状况。
这样的措施将有助于对现象的比较研究,并有助于阐明通风策略的影响。它最终也可能成为指导支持设置的临床用途参数。以前的工作使用了不同基于EIT的pendelluft措施。例如,Sang等人(2020)使用了区域相移的度量(定义为全球和区域阻抗时间曲线之间的时间差)和振幅差异(定义为所有区域潮汐变化和全局潮汐变化之间的阻抗差异)。Chi等人(2022)将Pendelluft的幅度定义为所有区域潮汐阻抗变化和全局潮汐阻抗变化之间的阻抗差异。在Liu等人(2024)中,pendelluft的发生定义为当潮汐变化幅度超过全球潮汐阻抗变化的2.5%时。在审查中,Su等人(2022)总结了Pendelluft的另外三项基于EIT的措施。我们认为,这些措施是有用的,但也是Pendelluft以外的现象的衡量标准。我们打算我们的参数
1。J2-芯片启用(CE):此跳线允许用户将CE引脚连接到接地,BAT_SN或直接与BAT+连接。接地或漂浮CE引脚禁用并重置设备。将跳线连接到4-3或2-1的位置以启用设备。或者,如果需要,可以将跳线直接绑在主机系统上,以达到其他低功率状态。2。J11 -I 2 C时钟上拉(SCL):此套头衫在I 2 C通信线上应用了10K上拉值。3。J12 -I 2 C数据拔下(SDA):此跳线在I 2 C通信线上适用于J13的10K拉值。4。J6 -BQ27Z558脉冲上拉(脉冲):该跳线在BQ27Z558的脉冲引脚上施加10K上拉值。5。J7 -BQ27Z558中断上拉(INT):此跳线在BQ27Z558的int引脚上施加10K上拉值。6。J9&J10-感官电阻:可以将这些跳线配置为使用高侧或低侧感电阻器。将J9上的分流设置为2-3位置,然后将J10上的分流设置为1-2,以使用低侧感。将分流器在J9上设置为位置1-2,然后将分流器在J10上设置为2-3,以使用高方向。7。J3 -BQ27Z558 VDD连接:此跳线将BQ27Z558 BAT PIN与Cell+联系起来。可以卸下此分流,以允许使用另一种仪器在各种操作条件下监视设备的当前消耗。8。J5 -BQ27Z558 TS连接:此跳线允许使用外部RT1热敏电阻。9。卸下并联允许使用内部温度感或与J8的2-3引脚连接的外部感觉。j13-上拉级选择器:此跳线允许用户在使用SYS+或外部电压作为拉力电压之间进行选择。将分流器设置为1-2以使用SYS+,然后将分流器设置为3-2的位置以使用EXT_VCC。将电压应用于EXT_VCC时,请谨慎,因为EXT_VCC已连接到EV2400。
这些测试对于调查可能来自食管的症状非常有用。大多数人会先进行内窥镜检查或钡剂 X 射线检查,以查看是否存在炎症或狭窄区域。食管通常会在吞咽时产生波形,将液体和固体推入胃中。有时这无法正常工作,导致各种症状(例如疼痛或吞咽困难)。pH/阻抗测试将指示过度反流是否可能导致您的病情。
当今的技术要求更高的数据速率和高效的传输。特性(或线路)阻抗是评估电缆或数据线在数据传输方面的性能的关键指标。这一基本点值得强调。因此,本文总结了两种测量阻抗的不同方法:时域反射法和频率分析。这两个互补的过程使客户能够测量特性阻抗和通过电缆的信号损耗。大多数时候,客户希望根据一定的损耗值了解电缆可以传输的最大频率。
虽然在许多情况下,最快的上升时间是理想的,但非常快的上升时间在某些情况下会在 TDR 测量中产生误导性的结果。例如,使用 35 ps 上升时间系统测试电路板上微带线的阻抗可提供出色的分辨率。但是,即使是当今使用的最高速逻辑系列也无法匹配 TDR 阶跃的 35 ps 上升时间。典型的高速逻辑系列(例如 ECL)的输出上升时间在 200 ps 到 2 ns 范围内。来自微带线中短截线或尖角等小不连续点的反射将非常明显,并且可能在 35 ps 的上升时间内产生较大的反射。在实际操作中,由具有 1 ns 上升时间的 ECL 门驱动的相同传输线可能会产生可忽略不计的反射。
摘要 — 本文通过使用 DJIB 比较最佳可用阻抗标准,全面描述了频率高达 80 kHz 的双约瑟夫森阻抗桥 (DJIB),这些标准 (a) 可直接追溯到量子霍尔效应,(b) 用作国际阻抗比较的一部分,或 (c) 被认为具有可计算的频率依赖性。该系统的核心是双约瑟夫森任意波形合成器 (JAWS) 源,它在高精度阻抗测量中提供了前所未有的灵活性。JAWS 源允许单个桥在复平面上比较具有任意比率和相位角的阻抗。不确定度预算表明,传统 METAS 桥和 DJIB 在千赫范围内具有相当的不确定度。这表明 DJIB 具有灵活性,可以比较任意阻抗、频率范围宽和自动平衡程序,并且不会影响测量不确定性。这些结果表明,这种类型的仪器可以大大简化各种阻抗尺度的实现和维护。此外,DJIB 是一种非常灵敏的工具,可用于研究频率相关的系统误差,这些误差可能出现在阻抗构造中以及频率大于 10 kHz 的 JAWS 源提供的电压中。