•游览开始 - 主要大厅:B区 - 一楼(请访问欢迎桌子参加导游。)• Reducing tremors through research - London Movement Disorders Centre: Zone B – Lower Level (BLL-250) • Personalizing medicine through research - Personalized Medicine Research Lab: Zone C – 9th Floor (C9-100) • Improving mental health care through research - Imaging Suite: Robarts Research Institute at Western University (Access through UH-Robarts link) • Improving orthopaedic surgery through research - Implant Retrieval Lab: Zone C – 8th Floor (C8-135A)•海报演示:B区 - 3楼,礼堂
患者和家属须知 如果您或您的孩子目前有人工耳蜗,请阅读以下关于如何在佩戴人工耳蜗的同时优化日常生活的信息。 激活和编程 经过一段时间的康复后,人工耳蜗植入者将返回印第安纳大学健康中心莱利儿童医院激活其人工耳蜗。激活时,您的孩子将有机会首次通过该设备听到声音。虽然人工耳蜗的音质非常奇怪,而且大多数人最初都听不懂语音,但这只是声音新旅程的开始。 人工耳蜗向听觉神经传递电信号。大脑的工作是从新信号中获得有意义的声音。为了让患者通过植入物听到声音,必须对该设备进行编程,使其适合其听觉神经传输声音。这种调整发生在一个称为映射的过程中。听力学家使用计算机来测量听觉神经对植入物每个电极触点处的声音反应。这样,听力学家就可以确定最适合人工耳蜗用户的听力设置。随着患者学习并获得人工耳蜗的听力经验,听觉通路开始适应新的刺激。随着这种适应的发生,他或她的地图设置将需要更改。通过重新编程和微调,我们的听力学家可以优化患者对声音的感知。了解静电放电静电放电 (ESD) 是指在不同电位的两个物体之间流动的突然瞬时电流。静电放电事件的原因之一是静电。静电通常是由两种材料接触然后分离(摩擦)时发生的电荷分离产生的。这方面的例子包括在地毯上行走、下车和接触塑料设备或某些类型的塑料包装。导体(如您的身体、水分和金属)为静电传到地面提供了一条安全路径。非导体(如塑料、橡胶、合成布和干燥空气)通常会让静电聚集并积聚到相当高的水平。只有当静电积累到一定程度时,才会对电子设备(如人工耳蜗)造成影响。在这些罕见情况下,大量静电放电可能会损坏人工耳蜗的电子元件,甚至可能破坏语音处理器的程序。即使电子设备已关闭,损坏仍可能发生。为避免静电积累或潜在的 ESD 问题,请考虑以下预防措施:
健康和医疗系统医疗系统的可扩展性、临床质量和护理成本、数字和个性化医疗、植入物和细胞工厂能力、药物输送系统、远程医疗、医疗保健分析、医疗保健运营、紧急护理物流、植入物制造和生物打印、以及人体技术和 AR/VR 设备。
近年来,电子技术的突破使金属氧化物半导体场效应晶体管 (MOSFET) 的物理特性不断提升,尺寸越来越小,质量和性能也越来越高。因此,生长场效应晶体管 (GFET) 因其优异的材料特性而被推崇为有价值的候选者之一。14 nm 水平双栅极双层石墨烯场效应晶体管 (FET) 采用高 k 和金属栅极,分别由二氧化铪 (HfO 2 ) 和硅化钨 (WSi x ) 组成。Silvaco ATHENA 和 ATLAS 技术计算机辅助设计 (TCAD) 工具用于模拟设计和电气性能,而 Taguchi L9 正交阵列 (OA) 用于优化电气性能。阈值电压 (V TH ) 调整注入剂量、V TH 调整注入能量、源极/漏极 (S/D) 注入剂量和 S/D 注入能量均已作为工艺参数进行了研究,而 V TH 调整倾斜角和 S/D 注入倾斜角已作为噪声因素进行了研究。与优化前的初始结果相比,I OFF 值为 29.579 nA/µm,表明有显著改善。优化技术的结果显示器件性能优异,I OFF 为 28.564 nA/µm,更接近国际半导体技术路线图 (ITRS) 2013 年目标。
在实验中评估 MRI 扫描期间植入物的安全性时,传感器放置的位置至关重要。使用测量和有限元建模的组合来评估测量对传感器放置的敏感性,以评估一组校准圆柱体末端的温度升高。模拟使用 COMSOL Multiphysics 创建的耦合热电磁模型来虚拟复制测量条件。评估了不同长度和直径的圆柱形植入物的参数模型中的热梯度,以量化在估计的温度测量不确定度内测量植入物加热所需的传感器放置精度。通过这种方式,我们旨在增强对 MRI 中植入物加热的实验程序和安全标准的要求的理解。
好处•增强的诊断:AI算法可以分析CBCT扫描,口内图像和患者记录的复杂数据集,以提供对骨质质量,解剖结构和潜在并发症的更准确评估。•改进的治疗计划:AI驱动的工具可以根据个人的需求来帮助虚拟植入物放置,手术指南设计和个性化治疗计划。•连续监视:IoT [2]设备,例如智能植入物和可穿戴传感器,可以实时监视植入物稳定性,康复进度和特定于患者的因素,并在需要时及时进行干预。•预测性维护:AI算法可以分析物联网设备的数据,以预测潜在的植入物故障或并发症,从而积极地维护和预防性护理。•个性化治疗方法:AI和IoT促进了针对每个患者独特的解剖学,临床状况和生活方式量身定制的个性化治疗计划。•改善患者的预后:通过增强诊断,治疗计划和监测,AI和IoT可以提高植入物的成功率,减少并发症和更好的患者满意度。
在三到四小时的手术中,外科医生将在处理思想和身体运动的大脑部分中植入无线,可充电硬币大小的大脑芯片。带有针比人头发薄的针头的神经手术机器人将用于植入超过60多个柔性超薄的“线”。根据Neuralink的说法,这些线程非常好,无法用人的手插入它们。
1。评估影响牙科植入物周围牙科骨骼变化的因素 - 探索性案例控制研究2。共振频率分析与评估植入物稳定性的反向扭矩测试:体外验证研究3。牙医信心水平对牙科临床决策的影响4。质子泵抑制剂和NSAID的影响对唾液成分5。Patient Satisfaction & Access to a Newly Established Dental Academic Center Learning Objective: To discuss research updates in the fields of implant dentistry, clinical decision making, drug effects on saliva, and patient satisfaction levels 11:30 – 13:00 Research Poster Viewing and Networking Session Learning Objectives: To examine recent findings from oral, dental, and craniofacial research