先前的研究已经证明了多孔钛植入物在松质骨中骨整合的能力。我们的研究旨在(i)使用 CT 扫描和组织学研究骨长入兔子皮质骨上 3D 打印多孔钛合金植入物的能力,以及(ii)确定临床锥形束计算机断层扫描 (CBCT) 和微型计算机断层扫描 (μ CT) 在评估骨长入方面的放射学信息的一致性。多孔钛合金植入物采用电子束熔化 (EBM) 技术 3D 打印,预期孔径为 600 μ m,孔隙率约为 50%。将每个植入物插入一只兔子的胫骨骨干,并将其孔隙分为接触骨或非接触骨。根据移植时间,将兔子分成两组:第 1 组由 6 只 13 至 20 周的兔子组成,第 2 组由 6 只 26 至 32 周的兔子组成。通过 CBCT 和组织学评估组织向非骨接触孔的长入情况。使用 μ CT 进一步研究骨长入四个种植体的情况(每组随机选择两个)。CBCT 检测到所有种植体的骨接触孔和非骨接触孔中均存在具有骨样密度的组织。μ CT 分析也支持这一结果。然后通过组织学证实所有骨样组织均为成熟骨。当将 μ CT 评估作为金标准时,分析 CBCT 数据以评估多孔种植体中的骨长入具有 85%、84%、93% 和 70% 的敏感性、特异性、阳性和阴性预测值。全多孔钛合金植入物具有良好的骨整合能力,在修复骨干骨缺损方面具有巨大潜力。CBCT 是一种很有前途的评估多孔植入物骨长入情况的方法。
该领域研究主题的目的是进一步了解植入前胚胎的发展方式,并考虑用于评估胚胎生存能力的当前技术。如果我们可以加深对植入前胚胎发育期间发生的分子和细胞事件的理解,我们将更接近鉴定胚胎生存能力的新的潜在分子标记,这可能有一天可以用来增加体外受精的成功(IVF)。在小鼠胚胎或其他动物模型中发现了有关细胞和分子水平的人类胚胎发育的许多知识。因此,了解人类胚胎发育与其他动物模型之间的相似性和差异对于阐明人类胚胎发育过程中发生的分子步骤至关重要(Bissiere等人,2023年综述)。研究人员通常依靠培养的细胞系和干细胞来了解这些分子和细胞事件(White and Plachta,2020)。例如,OH等人。报告从猪胚泡中得出谱系特异性胚胎细胞系以评估基因表达。对于接受IVF的患者,传统上转移的胚胎选择过程取决于形态指标,最近,对细胞的遗传分析,例如对促性剂的非整倍性植入基因测试(PGT-A)(Harris等人,2021年)。有趣的是,在整个植入前胚胎的整个培养期内成像和特定的延时成像方面的进步为形态学研究提供了新的途径。例如,已经发表了有关通过IVF孕育的植入前胚胎中细胞质字符串(通过延时成像)的最新报道,这些胚胎试图将这种形态结构与胚泡质量和妊娠结局联系起来(Ma等,2022; Joo等,2023)。可以说,与胚胎延时成像相关的最尖端的研究是将人工智能(AI)应用于胚胎筛选。使用AI作为非侵入性胚胎筛查的手段是一个有希望的研究领域,但是在我们看到AI经常在诊所中使用之前,还需要学习更多(Jiang and Bormann,2023年)。
目标:动脉高血压与肾素 - 血管紧张素系统的触发有关,导致左心室纤维化和较差的心血管结局。在这项研究中,从效应注册表中选择了经经导管主动脉瓣植入(TAVI)的合并症动脉高血压和严重主动脉狭窄(AS)的患者,以评估角血管紧张素转化酶抑制剂(ACEIS)或血管素II受体的影响。方法:我们招募了327名接受Tavi的患者。使用Kaplan - MEIER事件率和研究层的多变量COX比例危害回归模型,我们根据注册时的ACEI/ARB治疗状态评估了2年的临床结果。结果:在纳入的患者中,基线时有222名(67.9%)在ACEIS/ARB上,而105(32.1%)没有。用ACEIS/ARB的治疗与心血管死亡率降低2年显着相关(HR = 0.44,95%CI:0.23 - 0.81,p = 0.009)。在多变量调整和倾向分数匹配之后,该关联保持稳定。结论:在一群从效应注册中心选择的高血压患者中,基线时的ACEI/ARB治疗与较低的2年心血管死亡率的风险独立相关,这表明该治疗的潜在受益。需要进行更多的试验来验证这一发现并了解该处理的全部好处。
尽管有大量研究调查聆听努力程度以及有关人工耳蜗 (CI) 用户音乐感知的研究,但是从未有人研究过背景噪音对音乐处理的影响。鉴于聆听努力程度评估的典型噪声中语音识别任务,本研究的目的是调查在不同背景噪音水平的音乐作品上进行情绪分类任务时的聆听努力程度。除了参与者的评分和表现之外,还使用已知与这种现象有关的 EEG 特征来调查聆听努力程度,即顶叶区域和左侧下额叶 (IFG)(包括布罗卡区)的 alpha 活动。结果表明,CI 用户在识别刺激的情绪内容方面的表现差于听力正常 (NH) 对照组。此外,当考虑对应于听信噪比 (SNR) 5 和 SNR10 条件的 alpha 活动时,减去听安静条件下的活动(理想情况下,去除音乐的情感内容并隔离由于 SNR 而导致的难度级别),CI 用户报告的顶叶 alpha 和右半球左 IFG 同源体(F8 EEG 通道)的活动水平高于 NH。最后,提出了 F8 对与 SNR 相关的音乐聆听努力具有特殊敏感性的新建议。
应在无菌条件下进行注射程序,其中包括使用手术手部消毒,无菌手套,无菌垂缘和无菌眼睑窥镜(或同等)。在执行玻璃体内手术之前,应仔细评估患者的高敏反应病史。应对眼周,眼睑和眼部表面进行消毒并充分麻醉,并应在注射前施用广谱的局部微生物,并在注射玻璃体内注射后,可以用抗生素治疗患者,并应监测。监测可能包括注射后立即检查视神经头的灌注,注射后30分钟内的分解和注射后的生物显微镜检查。
Abbott devices: Gallant Single Chamber ICD, Gallant Dual Chamber ICD, Gallant HF, Quadra Allure MP CRT-P Pacemaker, Quadra Assura MP CRT-D, Ellipse Single, Chamber ICD, Ellipse Dual Chamber ICD, Fortify Assura Single Chamber ICD, Fortify Assura Dual Chamber ICD, Unify Assura CRT- D, Assurity Dual Chamber PPM, Assurity Single室PPM
Tivadar Lohner 1 、Attila Németh 2 、Zsolt Zolnai 1 、Benjamin Kalas 1 、Alekszej Romanenko 1 、Nguyen Quoc Khánh 1 、Edit Szilágyi 2 、Endre Kótai 2 、Emil Agócs 1 、Zsolt Tóth 3 、Judit Budai 4,5 、Péter Petrik 1,* 、Miklós Fried 1,6 、István Bársony 1 和 † József Gyulai 1
三维打印(3DP),也称为加法制造,是一个伞术语,其中包括几种制造技术,其中通过连续层结合或沉积材料建造固体结构。[1]随着现代医疗保健采用从传统的“千篇一律”方法转变为以患者为中心的护理,必须单独建立药物输送的最佳剂量和释放特征,以实现有效且安全的治疗结果。[2]尽管药物基因组学为基于个人临床变量设计量身定制的药物剂量方案和治疗提供了一种驱动力,但药物制造商采用的当前大批量生产过程无法处理个性化的特殊性,因此各种治疗差距普遍存在。[3,4]个性化的给药需要很高的生产过程灵活性,并且常规大规模生产口服剂型的多个步骤类型(包括铣削,混合,颗粒,干燥,干燥,压力等)使得很难迎合个性化的剂量。[5]例如,不可能使用常规的平板电脑制造工艺生产Duocaplet,其中将不同的药物纳入了单个口头产品中的各种构型。[6,7]
近年来,各种医疗设备类型都可以使用各种钛3D打印应用程序(1)。在肌肉骨骼肿瘤学领域,3D打印技术的改进允许创建定制植入物来处理复杂的重建。该主题与计算机辅助手术(CAS)密切相关,以及从术前成像研究中得出的数据,以改善临床和手术结果,例如骨切割的准确性(2、3、4、5)。在肿瘤学环境中手术的第一个目标是局部控制,同时完全切除了肿瘤(6)。但是,很明显,骨科外科医生必须首先考虑患者根据正确的组织病理学诊断可以接受的局部和全身辅助治疗。肢体挽救和内主人的替代手术如今已在所有原发性恶性骨肿瘤患者中使用90-95%,而不会损害肿瘤学结果(7、8、9)。假体重建可以分为两组。
图 2:10 K 下注入 Cr 的 MoSe 2 ML 的 PL。 (a) 低 n 掺杂(V g = 0.8 V)下注入 Cr 的 MoSe 2 ML(红色曲线)的 PL 光谱,与原始 MoSe 2 ML(黑色)的 PL 光谱一起绘制。除了来自 MoSe 2 ML 的 X − 和 X 之外,注入 Cr 的样品还在 1.51 eV 左右显示出宽 D 峰。 (b) 激光功率范围为 36 nW 至 123 µ W 下注入 Cr 的 ML 的 PL 光谱。光谱已针对 X − 进行归一化。此处的样品在 V g = 0.8 V 时略微 n 掺杂。 (c) PL 的功率依赖性。最佳拟合线(虚线)及其标准偏差(线周围的阴影区域)与从 PL 光谱中提取的强度(点)一起绘制。除非明确说明,误差线小于数据点的大小。X − 和 X 与幂律 I ∝ P α 拟合,D 与方程 (1) 描述的饱和曲线拟合。(d) Cr 注入 MoSe 2 的时间分辨 PL。1/e 时间约为 14 纳秒。