摘要 - 哥斯达黎加的教育必须思考并利用新的数字工具,例如聊天机器人,同时考虑相关的挑战和关注点以及它们的影响。哥斯达黎加教育部门的发展及其局限性可以反映出在该主题中拉丁美洲国家的限制,局限性和机会的模型。很少有关于CHATGPT及其在拉丁美洲的使用的研究,这是一项开创性的研究,可以导致许多未来关于生成人工智能的研究(AI)。对大学的关注提供了分析Chatgpt在教育领域的实际影响的机会。这项研究采用了定性探索方法,作为数据收集的方法是对教育和生成人工智能领域的学术数据库的文献计量学回顾,从而确定了代表研究现象的三个案例研究的识别,通过数据三角剖分,通过数据三角剖分,解释了研究对象的主要因素。结果支持Chatgpt,该研究通过改进学习过程,提供快速和个性化的答案并鼓励学生参与,对哥斯达黎加的教育产生积极影响。此外,我们提出了所有机构在教育体系的合作和执行之间的紧密结合:教育部长,中央政府,地方政府,大学,创新,非政府组织(NGOS),智囊团和国际组织。
显着性阈值。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 S3标记转录本,基因编码和新颖性分类。。。。。。。。。。。。。。。5 S4研究中考虑的各种转录组分析的概述。 输入和输出注释均为每个注释,管道名称以及所处理的转录组数据。 ISOSEQ注释是在基因开关项目的上下文中生成的,并从ENA检索(配件ERZ15610616和ERZ15610622)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。5 S4研究中考虑的各种转录组分析的概述。输入和输出注释均为每个注释,管道名称以及所处理的转录组数据。ISOSEQ注释是在基因开关项目的上下文中生成的,并从ENA检索(配件ERZ15610616和ERZ15610622)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 S5雷尼斯鸡肉图集基因的来源每个基因生物型。。。。。。。。。。。。。。。。。。7 s6 tau值的eNembl注释基因的分布。。。。。。。。。。。。。。8
一般而言,作物的起源中心与其最大程度的多样性有关。然而,也应注意,作物在驯化和栽培的过程中可能会形成多个多样性中心(Harlan,1971;Harlan,1975)。提出的驯化过程长期多中心模型特别适用于栽培作物,而不适用于其野生近缘种,因为栽培作物受到的人工选择压力较大,而野生近缘种只受到自然选择压力(Allaby 等人,2008)。这反映在一种作物的不同种质种质中多种性状以阵列模式共存于多个位置,每个种质都拥有不同的感兴趣性状组合(Esquinas-Alca zar,2005)。例如,为了表示水稻的谷粒大小和颜色、植株结构、种子落粒性(但适合脱粒)、各种非生物和生物胁迫耐受性、糯粒、开花时间和生命周期(短、中、长周期)等性状的完全变异性,我们需要大量的基因型(Izawa,2022 年;Shang 等人,2022 年)。如果我们将驯化过程中选择压力的结果以性状与变异性的形式列出,每个细胞包含适当的基因型,我们将获得一系列代表不同表型性状及其内部变异性的种质。这将揭示,如果特定基因型丢失,作物植物更容易受到遗传侵蚀(与作物野生近缘种 CWR 相比)。这是因为尽管存在自然选择压力,但农作物野生亲缘植物由于缺乏人工选择压力而未能多样化(在排列模式上)。保护这些珍贵的农作物遗传资源和农作物野生亲缘植物对于通过持续的农作物改良实现粮食安全至关重要。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
巴基斯坦的马铃薯 ( Solanum tuberosum L.) 种植面临挑战,其中由立枯丝核菌 (Rhizoctonia solani Kühn) 引起的黑痂病是一个严重问题。化学杀菌剂等传统方法可以部分控制该病,但缺乏有效的解决方案。本研究探讨了生物肥料和菊科杂草生物质土壤改良剂在控制该病害方面的潜力。选择了两个马铃薯品种 Karoda 和 Sante,并单独或与苍耳生物质一起测试了两种生物肥料 Fertibio 和 Feng Shou。阳性对照中的病害压力最高,化学杀菌剂可显著降低病害压力。苍耳生物质也显著降低了病害发生率。Fertibio 的效果优于 Feng Shou。施用生物肥料和生物质可以改善植物的生理生化特性。块茎重量、光合色素、总蛋白质含量和抗氧化酶(CAT、POX 和 PPO)呈正相关。Fertibio 和 S. marianum 生物质的联合应用可有效控制黑斑病。这些环保替代品可以增强疾病管理和产量。未来的研究应探索它们的成本效益、商业化和安全性。
微生物刺激素可作为生物和非生物胁迫保护剂和生长促进剂,在气候变化的背景下,在农业中也变得越来越重要。寻找能够在各种田间条件下帮助减少化学投入的新产品是新的挑战。在这项研究中,我们测试了两种具有互补作用模式的微生物生长促进剂(Azotobacter chroococcum 76A 和 Trichoderma afroharzianum T22)的组合是否可以帮助番茄适应最佳水和氮需求减少 30% 的情况。在最佳水和营养条件下,微生物接种物可提高番茄产量 (+48.5%)。此外,微生物应用提高了胁迫条件下的叶片水势 (+9.5%),降低了叶片整体温度 (-4.6%),并增加了地上部鲜重 (+15%),表明该组合可在有限的水和氮供应下充当植物水分关系的积极调节剂。在胁迫条件下施用 A. chroococcum 76A 和 T. afroharzianum T22 可显著增加根际微生物种群,这表明这些接种物可增强土壤微生物丰度,包括本地有益微生物的丰度。采样时间、有限的水和氮状况以及微生物接种均会影响根际土壤中的细菌和真菌种群。总体而言,这些结果表明,所选微生物群落可作为植物生长促进剂和胁迫保护剂,可能通过土壤微生物多样性和相对丰度的功能性变化触发适应机制。
使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
分散营养,支持发展和免疫力以及对营养不良和NCDS的控制 - 当今的生活方式以及由此产生的慢性病/疾病需要真正的,基于证据的阿育吠陀治疗方法/公式,才能以一种特定的解决方案来依赖于年龄,生活,生活方式和营养的需求,以综合的方式进行特定的解决方案。
由于当前范式正在经历的进步,因此出现了对运输系统的抽象新挑战。自动驾驶汽车的突破引起了人们对骑行舒适的担忧,而近年来污染了污染的担忧。在自动汽车模型中,预计驾驶员将成为乘客,因此,他们将更容易受到骑行不适或运动疾病的困扰。相反,由于对气候和人们健康的影响,因此不应搁置生态驾驶的含义。因此,对上述点的联合评估将产生积极影响。因此,这项工作提出了一个自组织的基于地图的解决方案,以评估个人从生态驾驶的角度考虑其驾驶风格的骑行舒适特征。为此,使用了从仪器的汽车中获得的数据集来对驱动程序进行分类,以分类其缺乏骑行型和生态友好性的原因。一旦对驾驶风格进行了分类,就提出了基于自然的建议,以增加与系统的参与。因此,预计将达到骑行舒适评估参数的潜在提高57.7%,以及预计将达到温室气体排放的47.1%。