神经干细胞(NSC)位于定义的细胞微环境中,利基市场,该环境支持新生神经元的产生和整合。围绕NSC围绕NSC及其与神经发生的功能相关的机制尚待理解。在果蝇幼虫大脑中,皮层胶质(CG)包含膜腔中的个体NSC谱系,将干细胞种群和新生神经元组织成刻板的结构。我们首先发现CG围绕谱系与谱系相关的细胞不论其身份如何,表明谱系信息构建了CG架构。然后,我们发现使用保守的配合物具有时间控制的差异粘附机制支持了NSC谱系的单个包围。通过同粒神经相互作用通过同一谱系的细胞之间的强烈结合,而通过Neurexin-IV和NSC谱系之间存在较弱的相互作用,则具有强烈的结合。神经胶质的丧失导致NSC谱系结合在一起,并在变化的CG网络中,而神经毒素-IV/包装器的丢失会生成更大但定义的CG腔室,将几个谱系分组在一起。在这些条件下,新生神经元的轴突投射也发生了变化。此外,我们将这两种粘附复合物的丧失与最终成年人的运动多动症联系起来。总的来说,我们的发现确定了在单个干细胞的规模上建立神经源性生殖位的粘连带,并提供了在发展过程中成年成人行为的概念证明。
•进行住房搜索;安排环境修改/房屋检查•安排社区交通服务/旅行培训•解决任何法律问题;安排安全和公用事业存款;家庭用品•安排同伴支持/独立生活技能培训/生活技能教练•安排咨询/行为健康需求•安排家庭护理监察员访问;安排护理人员的外展和培训•找到社区药房以补充RX药物•找到初级保健医师/诊所;安排医疗/牙科/专家任命•全面豁免登记;选择案例MGT/服务提供商的CASE MGT/护理协调员•完整的生活质量调查•转介耐用医疗设备和辅助技术
随着移动设备成为人类存在和活动的代理,移动运营商收集的数据集(即呼叫详细记录(CDRS))被公认为是研究人类行为的常见工具,在多种研究中和行业中,社会学[1],例如,流行病学[2],运输[3],交通[3],[4](CF>)图1a)。CDR描述了与操作员网络交互的每个移动设备生成的时期和地理参考事件类型(例如,呼叫,SMS,数据)(参见表I)。 它们包括城市,地区或乡村地区,通常涵盖长期(月或数年);当今,没有其他技术提供同等的人均精确范围。 然而,现实世界中CDR对研究的剥削面临许多局限性(参见 §ii)。 首先,可访问性:CDRS数据集未公开可用,施加了严格的移动运营商协议。 第二,可用性:CDR通常以汇总形式(即分组的迁移率流和粗时空信息)提供,限制了相关分析的精确性。 第三,隐私:即使是匿名化的CDR,CDRS描述了用户习惯的敏感信息,这使他们的共享性硬化[5]。 第四,灵活性:限制访问CDRS的限制了高级研究,需要在人口规模,持续时间或地理覆盖范围内进行数据丰富。 本文介绍了实施CDR的自动生成,以解决上述挑战。表I)。它们包括城市,地区或乡村地区,通常涵盖长期(月或数年);当今,没有其他技术提供同等的人均精确范围。然而,现实世界中CDR对研究的剥削面临许多局限性(参见§ii)。首先,可访问性:CDRS数据集未公开可用,施加了严格的移动运营商协议。第二,可用性:CDR通常以汇总形式(即分组的迁移率流和粗时空信息)提供,限制了相关分析的精确性。第三,隐私:即使是匿名化的CDR,CDRS描述了用户习惯的敏感信息,这使他们的共享性硬化[5]。第四,灵活性:限制访问CDRS的限制了高级研究,需要在人口规模,持续时间或地理覆盖范围内进行数据丰富。本文介绍了实施CDR的自动生成,以解决上述挑战。尤其是(1)我们通过建立这种生成的痕迹的范围并描述它如何为研究进展提供新的途径,详细介绍了这种解决方案的动机,(2)我们通过提出相关要求和挑战来分享对现实CDR生成的可行性研究。
尽管社会认知缺陷是自闭症谱系障碍的核心特征,但个体社会表现存在很大差异,其神经基础仍未得到充分研究。在这里,我们使用眼动追踪客观测量了 25 名自闭症儿童(8.5 ± 3.8 岁)社会感知的个体间变异性及其与白质微结构的相关性,用扩散张量成像 MRI 测量。除了证实自闭症谱系障碍患者的社会感知缺陷外,我们还与 24 名正常发育对照者(10.5 ± 2.9 岁)进行了比较,结果显示自闭症谱系障碍患者的这种行为存在很大的个体间差异。全脑分析显示,在自闭症谱系障碍组和正常发育组中,注视眼睛的次数与分数各向异性值之间存在正相关性,主要在右侧和左侧上纵束中。在自闭症谱系障碍儿童中,右侧和左侧下纵束也观察到了相关性。重要的是,在右下纵束前部(主要是右前颞区)观察到了组别和注视次数之间的显著相互作用。补充区域中的这种额外相关性表明存在补偿性大脑机制,这可能有助于提高自闭症谱系障碍儿童的社交感知能力。
Jean-Baptiste Bachet、Pierre Laurent-Puig、Aurelia Meurisse、Olivier Bouché、Léo Mas 等。基线循环肿瘤 DNA 用于未接受化疗的转移性结直肠癌患者的个性化预测。AGEO 前瞻性研究。《欧洲癌症杂志》,2023 年,189,第 112934 页。�10.1016/j.ejca.2023.05.022�。�hal-04786998�
精神神经影像学面临严格性和可重复性的挑战,这些挑战促使重新考虑研究设计的相对优势和局限性。由于资源的高需求和不同的推论目标,当前的设计差异强调了样本量,测量广度和纵向评估。在这个概述和观点中,我们为科学目标和资源限制的这种平衡提供了当前精神神经影像学研究设计的指南。通过启发式数据立方体对比关键设计特征,我们讨论了小样本,精确纵向研究(例如个性化研究和同伙)和大型样本,最小纵向,人口研究的折衷。精确研究通过干预和跟踪纵向过程来支持人体内机制的测试。人群研究支持跨多方面个体差异的概括测试。提出的相互验证模型(RVM)旨在递归地以顺序利用这些互补设计,以积累证据,优化相对强度并朝着改善长期临床效用而建立。
摘要背景 美国注射毒品使用的增加导致注射部位感染增加。我们对吸毒者进行了一项全国性调查,以评估常见的吸毒准备、减少伤害的做法以及注射部位感染的经历。方法 2021 年至 2022 年,向关键线人患者调查计划的成员分发了一项调查,并分发给 18 岁或以上的新进入美国 68 个物质使用障碍治疗计划之一的患者,其主要诊断为阿片类药物使用障碍。调查对象接受了有关准备和使用药物时的做法以及自我报告的感染和药物使用并发症的调查。结果 1289 名参与者回复了调查。性传播感染很常见,37.6% 的人报告曾经患过任何性传播感染。注射相关感染影响了 63.4% 曾经使用过注射毒品的参与者。许多受访者表示没有寻求专业医疗帮助进行感染管理,其中 29% 的人在没有寻求医疗护理的情况下引流脓肿,22.8% 的人通过非医疗来源获得抗生素。非无菌注射做法包括与发烧或生病的人共用针头 (18%)、使用之前用于引流伤口/脓肿的针头 (9.9%) 进行后续注射毒品,以及舔针头 (21.2%)。结论 接受阿片类药物使用障碍治疗的患者报告了很高的传染病负担。确定了许多易于改变的导致注射相关感染的高风险行为。需要努力向 PWID 传播有针对性的减害教育,了解如何降低注射相关感染的风险。关键词 物质使用障碍、减害、注射毒品患者
公开会议:2025 年 2 月 4 日 一读:2025 年 2 月 4 日 日期 日期项目(选一项)X 法令 谴责 拨款接受/修正案 决议 拨款申请 公开听证会请求 其他:______________________________________________________________________________ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 项目描述:对孟菲斯和谢尔比县能源保护法规的修正案。案件编号:无 地点:孟菲斯市和非建制谢尔比县 申请人:孟菲斯和谢尔比县规划和发展部 代表:约翰·泽纳,部门主任 要求:通过对孟菲斯和谢尔比县能源保护法规的修订。 区域:此修订影响孟菲斯市和非建制谢尔比县内的所有财产。建议:规划和发展司:批准= ...实体 (3) 理事会 委员会 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 资金:(2) 需要城市支出 - (1) 是 (2) 否 $ 支出金额 $ 待收收入 资金来源和金额 $ 运营预算 $ CIP 项目 #_______________________________ $ 联邦/州/其他 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =行政批准:日期 职位 ___________________________________________ ____________ 首席规划师 _____________________________________________ ____________ 副主任 _____________________________________________ ____________ 主任 _____________________________________________ ____________ 主任(联合批准) _____________________________________________ ____________ 主计长 _____________________________________________ ____________ 财务总监 _____________________________________________ ____________ 市检察官 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = _____________________________________________ ____________ 首席行政官 _____________________________________________ ____________ 委员会主席
在之前的研究中,我们小组表明,可以根据从常规结构磁共振成像 (MRI) 扫描中获得的神经解剖特征以及随后使用流行的 FreeSurfer 工具进行的分析来识别个体受试者 (Valizadeh 等人,2018)。即使仅使用少数神经解剖特征(包括总脑容量、小脑灰质和白质、基底神经节体积和脑干体积在内的 11 个脑部测量值),识别率也非常好。当使用大量大脑区域时,受试者识别率几乎完美。使用易于获得的神经解剖学测量值的受试者识别精度与其他人使用更复杂的神经解剖学测量值报告的识别结果相似 (Wachinger 等人,2015 年、2017 年)。这些结果被视为人类大脑在很大程度上具有高度个体化的证据。近年来,基于神经科学方法和数据寻找个体标记变得非常流行。该领域的最新研究表明,可以根据来自结构 MRI(Wachinger et al., 2015 , 2017 ; Valizadeh et al., 2018)、功能 MRI(Miranda-Dominguez et al., 2014 ; Finn et al., 2015 ; Amico & Goñi, 2018 ; Bari et al., 2019)、脑电图 (EEG)(La Rocca et al., 2014 ; Fraschini et al., 2015 ; Kong et al., 2019 ; Valizadeh et al., 2019)或功能性近红外光谱 (fNIRS)(de Souza Rodrigues et al., 2019)的神经指纹来区分和识别个体。目前,也有人提出,这种神经指纹可能与个体智力和流体认知能力的差异有关,例如工作记忆和注意力(Greene 等人,2018 年;Rosenberg 等人,2020 年;Yamashita 等人,2018 年;Yoo 等人,2018 年)。个体指纹也有可能积累起来形成区分临床人群的群体指纹。这种脑指纹研究与大量公开的数据集同时出现。然而,大数据神经科学方法往往忽视了人类的个性、奇点和变异性。因此,要了解这种个体变异,有必要描述人类大脑的个体特征。在我们之前的研究中,我们使用了 193 名老年人的数据集,这些老年人在 3 年内每年都会获得 MRI 数据(Valizadeh 等人,2018 年)。每位受试者获得的三次扫描中,有两次是随机的
在过去的几十年中,量子技术领域一直在迅速扩展,产生了许多应用,例如量子信息,量子通信和量子网络安全。在这些应用的核心上是量子发射极(QE),这是单个光子或光子对的确切可控的发电机。半导体QE,例如钙钛矿纳米晶体和半导体量子点,作为纯单个光子的发射器表现出很大的希望,当用等离子体型纳米腔杂交时,具有产生光子对的潜力。在这项研究中,我们开发了一个系统,在该系统中,可以以可控的方式与外部等离子跨表面进行交互之前,期间和之后,可以追溯到单个量子发射器及其集合。将外部等离质元面耦合到量化量阵列后,单个QES从单光子发射模式切换到多光子发射模式。值得注意的是,该方法保留了QE的化学结构和组成,使它们可以在与等离子次曲面解耦后恢复至初始状态。这显着扩大了半导体QE在量子技术中的潜在应用。