2 罗斯班克医学肿瘤中心,129 Oxford Road, Saxonwold 2196,约翰内斯堡,南非。 3 癌症支持治疗跨国协会 (MASCC),中性粒细胞减少症、感染和骨髓抑制研究组主席。 4 曼彻斯特大学基金会信托,英国曼彻斯特。曼彻斯特大学克里斯蒂,英国曼彻斯特。cooks199@hotmail.com 5 癌症支持治疗跨国协会 (MASCC),中性粒细胞减少症、感染和骨髓抑制研究组副主席。 6 Douglas B. Johnson,美国田纳西州纳什维尔范德堡大学医学中心和范德堡英格拉姆癌症中心医学系。douglas.b.johnson@vumc.org 7 美国休斯顿德克萨斯大学 MD 安德森癌症中心肺科系。vshannon@mdanderson.org
数据于 2025 年 8 月 1 日从 HPSC SARI 监测数据库中提取。数据是临时的,需要持续审查、验证和更新。因此,本报告中提供的数字可能与之前发布的数字不同。三家医院中的两家正在对 2024 年第 52 周和 2025 年第 1 周(由于假期)进行回顾性数据收集,这些周显示的数据目前不完整,低估了 SARI 病例数和发病率。这是 SARI 每周报告的节选版。
。cc-by-nc 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2024年4月17日发布。 https://doi.org/10.1101/2023.12.06.570389 doi:biorxiv preprint
关键点54•HBV感染导致在感染细胞的核中建立了病毒cccDNA微型55的池,这是导致病毒持久性的。56•当前的HBV建议疗法有效地实现病毒抑制57改善患者的生活质量;但是,他们无法消除病毒58微型浓度小体,因此可以治愈CHB。59•当前治疗研究的下一个可实现目标是实现有限治疗后的60治疗,从而导致循环中的HBSAG抑制。61•针对直接CCCDNA靶向的疗法,要么为其降解,主HBV蛋白中的致命62突变或转录沉默正在积极地被探索63。64•对CCCDNA生物学的全面了解对于寻找潜在的可药65靶标并实现HBV靶向疗法仍然至关重要。66•临床前研究中有希望的直接CCCDNA靶向方法,目的是减少或沉默病毒的微型浓度储层,以克服交付,68个安全性和可行性问题。69 70 71 72 73 74 75 76 77 77 79 79 80 81 82 83 84 85 86 87 87 88 89 90 91 91 92 92 93 94
白喉的复兴是由几个因素引起的,包括在社会经济状况低下或政治不稳定的国家中疫苗接种过程中的破坏(2,3),提高了无氧感染的认识和提高(4,5),以及在某些设置中的变化(4、5)(6)。青少年和成年人在没有持续的毒素菌株传播或足够的增强免疫免疫力的情况下,其疫苗诱导或自然诱导的保护减弱,在白喉暴发期间特别容易受到攻击(7)。疫苗覆盖率为80%–85%,以前已建议在人口水平上维持牛群的免疫力(8);但是,最新数据建议覆盖阈值> 90%(9)。白喉毒素是毒corynebacterium spp。的主要毒力因子,抑制靶宿主细胞中蛋白质的合成(10)。通过位点特异性重组,噬菌体编码的毒素基因Tox将其整合到细菌基因组中。如果用毒素基因 - 携带corynephage溶解蛋白,则无氧化物甲状腺菌可以产生毒素。某些无氧二甲状腺菌分离株含有托克斯基因,但由于该基因中的移料突变或插入序列(称为非氧基因,毒素基因基因[nttb] C. diphtheriae),无法表达毒素(11)(11)。尽管很少见,但据报道,NTTB C.二骨在某些国家是新兴的病原体(11,12)。由doci-Genic corynebacterium菌株引起的经典呼吸双性白喉的特征是喉咙痛,低度发烧,颈部肿胀和灰色/白色假膜覆盖
Surgical Site Infection (SSI) is defined as an infection at the site of a surgical incision occurring within 30 days of an operation and can be classified as [1] superficial, including the skin and subcutaneous tissue, [2] deep, including the underlying muscle and fascia, or [3] space SSI, including any organs or tissues other than the muscle or fascia [1].SSI是最常见的医疗保健相关感染,导致了几种不良后果,包括增加伤口愈合时间,增加抗生素的使用,较长的医院住院以及总体上更高的医疗保健相关成本[2]。在沙特阿拉伯的一家三级医院进行的一项大型队列研究确定革兰氏阴性细菌是SSIS中最常见的致病生物,最常见的是大肠杆菌,其次是铜绿假单胞菌,铜绿假单胞菌,Klebsiella pneumoniae,Klebsiellaiae和kinetobactobactabacter baumanniai [3]。
摘要:尽管对急性呼吸道(CO)感染具有快速准确的诊断至关重要,但呼吸医学了解当前实验室方法的优势至关重要。在这项研究中,我们用可用的PCR分析测试了鼻咽样品(n = 29),并将结果与基于杂交捕获的MNG的结果进行了比较。阳性PCR样品的检测标准为CT <35,对于MNGS样品,目标覆盖率> 40%,中位深度为1X和RPKM>10。记录了高度的一致性(98.33%PPA和100%NPA)。然而,MNG在PCR以外产生了29种额外的微生物(23种细菌,4种病毒和2种真菌)。然后,我们使用IDBYDNADixplify®平台(Illumina®Inc,San Diego,CA,USA)将每种方法的微生物分为三种表型类别,以考虑感染性和下呼吸道区域的潜在。发现急性上呼吸道感染的全面但与临床相关的微生物学表现很重要,在免疫功能不佳或与合并症呼吸道疾病或传统综合症无法识别病原体的情况下,尤其重要。因此,该技术可用于补充基于当前综合征的测试,并且可以在表型中快速有效地表征数据,以表征用于传播潜力,临床(CO)感染和合并考虑 - 有望降低发病率和死亡率。
兽医微生物学是兽药的一个分支,侧重于了解微生物在引起动物疾病的作用。这些微生物,包括细菌,病毒,真菌和寄生虫,可能导致动物的各种健康问题,从轻度感染到威胁生命的疾病。兽医微生物学家在诊断,治疗和预防这些疾病中起着至关重要的作用,确保动物和公共卫生受到保护。兽医微生物学对于识别导致动物感染的病原体,无论是家庭宠物,牲畜还是野生动植物。该领域涵盖了微生物的研究及其与宿主动物的相互作用,包括它们如何感染和传播,症状以及如何控制它们。兽医微生物学的主要目标之一是开发有效的诊断测试以识别这些病原体,这对于及时治疗至关重要。此外,它有助于创建疫苗,抗生素和其他治疗方法,以控制感染并减少疾病的传播,其中一些可能是世界自动含量的,它们可以传播给人类。有效的诊断对于治疗动物的传染病至关重要,兽医学家使用一系列诊断技术来识别病原体。人畜共患病是可以从动物传播到人类的疾病,代表了兽医微生物学的最重要方面之一。人畜共患病的例子包括狂犬病,结核病和沙门氏菌。近年来,兽医微生物学从进步中受益兽医微生物学家不仅通过监测动物健康,而且还通过教育公共和动物所有者有关预防策略的教育,在控制人畜共患病的传播方面发挥了关键作用。防止人畜共患病的传播涉及动物和人类的适当处理,疫苗接种和卫生实践。监视和早期检测对于防止爆发至关重要,尤其是在人类和动物近距离接近的地区。
摘要 新型冠状病毒——严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 于 2019 年 12 月被发现,已导致全球数百万人感染和死亡。接种 SARS-CoV-2 疫苗已被证明可有效遏制病毒传播并减少疾病。这些疫苗的生产和分发以惊人的速度进行,主要是通过使用新型 mRNA 平台。然而,供应链中断和对临床级试剂的高需求阻碍了 mRNA 疫苗的生产和分发,而此时加速疫苗部署至关重要。此外,全球范围内 SARS-CoV-2 变种的出现继续威胁着编码祖先病毒刺突蛋白的疫苗的有效性。在这里,我们报告了使用 GreenLight Biosciences 开发的专有 mRNA 生产工艺开发的 mRNA 疫苗的临床前研究结果。在啮齿动物中评估了两种编码全长非稳定化 SARS-CoV-2 刺突蛋白的 mRNA 疫苗 GLB-COV2-042 和 GLB-COV2-043,分别含有尿苷和假尿苷,以了解它们的免疫原性和对祖先毒株和 Alpha(B.1.1.7)和 Beta(B.1.351)变体的 SARS-CoV-2 攻击的保护作用。在小鼠和仓鼠中,两种疫苗均诱导了强大的刺突特异性结合和中和抗体,在小鼠中,疫苗诱导了显著的 T 细胞反应,具有明显的 Th1 偏向。在仓鼠中,两种疫苗在受到 SARS-CoV-2 攻击后均提供了显著的保护作用,以体重减轻、病毒载量以及肺部和鼻咽中的病毒复制来评估。这些结果支持 GLB-COV2-042 和 GLB-COV2-043 的临床应用开发。