摘要 — 本文提出了一种基于电网内现行功率流条件的节点聚类新方法。为此,首先,将网络的有功功率流状态建模为有向无环图。该有向图明确表示功率流向何处,这有助于监控和分析系统漏洞。有向无环图表示还可以轻松识别仅提供或吸收有功功率的总线:这些总线分别是纯源节点和纯汇节点。对系统中的每个节点应用迭代路径查找程序,以枚举供电的源节点和其将功率转发到的下游汇节点。然后应用新颖的聚类算法将共享同一组可达源节点和汇节点的节点分组在一起。首先提出这种新颖的聚类方法作为一种工具,通过更好地总结大型电网中的总功率流配置来提高控制室操作员的态势感知能力。所提出的方法应用于两个样本电网,并阐述了与河流系统的类比,将支流、分流和中央主流等概念应用于电网。
对称信息完整测量 (SIC) 是希尔伯特空间中优雅、著名且广泛使用的离散结构。我们引入了一个由多个 SIC 复合而成的更复杂的离散结构。SIC 复合结构定义为 d 维希尔伯特空间中的 d 3 个向量的集合,可以以两种不同的方式划分:划分为 d 个 SIC 和 d 2 个正交基。虽然当 d > 2 时,它们的存在似乎不太可能,但我们意外地发现了 d = 4 的明确构造。值得注意的是,这种 SIC 复合结构与相互无偏基具有密切的关系,正如通过量子态鉴别所揭示的那样。除了基本考虑之外,我们利用这些奇特的属性来构建量子密钥分发协议,并分析其在一般窃听攻击下的安全性。我们表明,SIC 复合结构能够在存在足够大的错误的情况下生成安全密钥,从而阻止六态协议的推广成功。
这份联合工作人员报告有关大石油的长达数十年欺骗运动的最终导致了众议院监督与问责制民主党的长达三年的调查(众议院监督),该委员会在第118届国会期间与参议院预算委员会工作人员的民主党工作人员合作。调查专注于埃克森美孚公司(Exxon),雪佛龙公司(Chevron Corporation(Chevron),Shell USA Inc.(Shell)(Shell),BP America Inc.(BP)(BP),美国石油研究所(AI)(AI)和商会(会议厅),并为他们提供了稀有的努力,并欺骗了他们的投资,并欺骗了他们的投资,并欺骗了人们的努力,并欺骗了人们的投资,并欺骗了人们对更改的努力,并欺骗了人们的努力。破坏遏制温室气体排放的努力。
V Veitch、SAH Mousavian、D. Gottesman 和 J Emerson。稳定器量子计算的资源理论。《新物理学杂志》,16(1):013009,2014 年
➔ 教练决定学生在田径运动中的分班情况,并将通知辅导员办公室 ➔ 参加田径运动前必须进行体检 ➔ 田径运动时间仅适用于踢足球、排球和/或篮球的学生。踢足球、田径或打网球的学生不会被安排在田径运动时间。 ➔ UIL“不及格,不参加”规则生效——成绩单上任何低于 70 分的成绩都将无法参加
文本中的文本为每个部分的开头用于提供各节的指导。这是“将地理空间信息应用于气候挑战”的高级未经编辑的副本。任务团队将在接下来的几个月内详细阐述并基于该草案,直到联合国全球地理空间信息管理(UN-GGIM)的第七级高级论坛(UN-GGIM)将于2024年10月8日至10日在墨西哥墨西哥城召集,设计为“ do-geospatience”的更新版本,是什么?首先在第十三届会议上介绍了委员会要求成员国分享其国家,地区和全球经验,证明了地理空间信息在气候和弹性方面的作用,建立了证据体。预计将通过交互式故事图(或类似平台)发布国家体验并提供,并在第七级高级论坛的领导中得到增强]
摘要。现代神经界面的市场尽管不幸的是,尽管它的积极发展,但可以为用户提供许多现有的原型,这些原型具有相对较低的人类操作员控制效果的准确性和识别可靠性。此外,市场上的任何神经界面都必须分别针对每个操作员量身定制,这使得很难使其准确性,精度和可靠性客观化。解决上述问题的第一步是对本文介绍的现有神经接口技术市场的不同价格段进行比较分析。市场研究表明,尽管脑电图的缺点,但它是在神经界面系统中记录生物学信号的最易接收的非侵入性方法之一。为了促进未来的研究,已经考虑并分析了神经界面中已知模型和信号分析方法的主要优势和缺点。尤其是在信号预处理,诸如共同平均参考,独立组件分析,常见空间模式,表面拉普拉斯,常见的空间空间模式和自适应滤波等方法的信号预处理,优势和缺点的情况下。在评估信号的信息特征,模型和方法的分析基于自动锻炼的自适应参数,双线性自动化,多维自动进程,快速傅立叶变换,小波转换,波包分解的模型。此外,对人类神经界面操作员的控制效应的最常见鉴定方法(识别)的比较分析,即,判别分析的方法,参考矢量的方法,非线性贝叶斯分类器,邻居的分类器,人造神经网络的分类器。神经界面技术的研究为研究人员提供了更多的基础,以选择神经接口系统的数学,软件和硬件,并为新版本的开发提供了提高的准确性,可靠性和可靠性。
