背景:临床预测是现代医疗保健不可或缺的一部分,它利用当前和历史医疗数据来预测健康结果。人工智能(AI)在该领域的整合显着提高了诊断准确性、治疗计划、疾病预防和个性化护理,从而改善了患者治疗效果和医疗效率。方法:本系统评价实施了一种结构化的四步方法,包括在学术数据库(PubMed、Embase、Google Scholar)中进行广泛的文献检索、应用特定的纳入和排除标准、提取数据以重点关注 AI 技术及其在临床预测中的应用,以及对收集到的信息进行彻底分析以了解 AI 在增强临床预测方面的作用。结果:通过对 74 项实验研究的分析,确定了 AI 显着增强临床预测的八个关键领域:(1)疾病的诊断和早期发现;(2)疾病过程和结果的预测;(3)未来疾病的风险评估;(4)个性化医疗的治疗反应;(5)疾病进展;(6)再入院风险;(7)并发症风险;(8)死亡率预测。肿瘤学和放射学是从 AI 临床预测中受益最多的专业。讨论:该综述强调了 AI 在各个临床预测领域的变革性影响,包括其在革命性诊断、提高预后准确性、辅助个性化医疗和增强患者安全方面的作用。AI 驱动的工具对医疗保健服务的效率和有效性做出了重大贡献。结论和建议:AI 在临床预测中的整合标志着医疗保健领域的重大进步。建议包括提高数据质量和可访问性、促进跨学科合作、注重道德的 AI 实践、投资 AI 教育、扩大临床试验、制定监管监督、让患者参与 AI 整合过程以及持续监测和改进 AI 系统。
鉴于哥伦比亚特区法院长期以来一直致力于提高信息技术能力,为公众提供最高水平的服务,并为员工提供最先进的技术工具,以提高运营效率。法院继续开发、管理和维护有效、高效和有弹性的信息技术基础设施,以支持法院的使命和战略目标:1:让所有人都能获得司法公正;2:公众信任和信心;3:良好的工作场所;4:有效的法院管理;5:公平及时的案件解决;6:种族平等和文化能力。2023-2027 年战略计划中的一项战略是利用最先进的技术,使法院人员能够有效、高效地开展工作。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
在印度,Aadhaar 系统为每个公民建立了一个逐步强制执行的唯一身份证号码,构成了世界上最大的生物识别身份系统,该系统对 Silvia Masiero 和 Soumyo Das 所称的多种形式的“数据不公正”负责,这是由于“反贫困计划的数据化”(Masiero & Das,2019)。据他们介绍,由于受益人的数据被强制纳入计划设计,这些数据集与权利的确定直接相关。换句话说,将“受益人群转换为机器可读数据”可以识别和分析用户,以分配(或不分配)权利。并非偶然,最具侵入性和惩罚性的系统针对的是穷人(Eubanks,2018)。一如既往,权力,在种族、阶级、性别、领土、残疾等所有交叉性中,在特定技术的部署方式和目标对象方面发挥着重要作用。
r TE n ( ω ) M eo,nm ( r , k 3 ) ⊗ M eo,nm ( r ′ , k 3 ) + r TM n ( ω ) Ne eo,nm ( r , k 3 ) ⊗ Ne eo,nm ( r ′ , k 3 )。
丹麦奥尔堡市奥尔堡大学医院的肿瘤学和临床癌症研究中心; B丹麦奥尔堡市奥尔堡大学临床医学系; c临床数据科学中心,丹麦奥尔堡市奥尔堡大学和奥尔堡大学医院; D丹麦奥尔堡大学临床医学系炎症性肠病分子预测中心(预测); E分子诊断和临床癌症研究中心,丹麦阿尔堡市阿尔堡大学医院; F丹麦奥尔堡市奥尔堡大学医院临床遗传学系; G丹麦奥尔堡市奥尔堡大学医院神经外科系; h丹麦奥尔堡市奥尔堡大学医院血液学系; I丹麦奥尔堡市奥尔堡大学医院临床药理学系;丹麦奥尔堡市奥尔堡大学医院放射科J放射科; K丹麦奥尔堡市奥尔堡大学医院病理学系
最后,Darktrace 还使用各种机器学习技术来自动执行调查工作流程中执行的重复且耗时的任务。通过分析专家网络分析师如何与 AI 的输出进行交互(例如他们如何分类威胁警报以及他们如何使用第三方来源),Darktrace 能够复制这些专家行为并自动执行某些分析师功能。这使得所有成熟度级别的分析师都能进行越来越高效和简化的调查。它还为安全团队提供了他们所需的关键时间,使他们能够专注于更高价值的战略工作,例如管理风险和专注于更广泛的业务改进。