利用代码调制视觉诱发电位 (c-VEP) 形式的非周期性闪烁视觉刺激代表了反应性脑机接口 (rBCI) 领域的一项关键进步。c-VEP 方法的主要优势在于模型的训练与目标的数量和复杂性无关,这有助于减少校准时间。尽管如此,现有的 c-VEP 刺激设计可以在视觉用户体验方面进一步改进,同时实现更高的信噪比,同时缩短选择时间和校准过程。在本研究中,我们介绍了一种创新的代码 VEP 变体,称为“突发 c-VEP”。这种原创方法涉及以故意缓慢的速率呈现短暂的非周期性视觉闪光,通常每秒闪光两次到四次。这种设计背后的原理是利用初级视觉皮层对低级刺激特征的瞬时变化的敏感性来可靠地引发一系列独特的视觉诱发电位。与其他类型的快节奏代码序列相比,突发 c-VEP 表现出良好的特性,可以使用卷积神经网络 (CNN) 实现高按位解码性能,从而有可能在需要更少校准数据的情况下实现更快的选择时间。此外,我们的研究重点是通过减弱视觉刺激对比度和强度来降低 c-VEP 的感知显着性,以显著提高用户的视觉舒适度。通过涉及 12 名参与者的离线 4 类 c-VEP 协议测试了所提出的解决方案。按照因子设计,参与者被指示关注 c-VEP 目标,其模式(突发和最大长度序列)和幅度(100% 或 40% 幅度深度调制)在实验条件下被操纵。首先,全幅突发 c-VEP 序列表现出更高的准确度,范围从 90.5%(使用 17.6 秒的校准数据)到 95.6%(使用 52.8 秒的校准数据),而 m 序列的准确度为 71.4% 到 85.0%。两种代码的平均选择时间(1.5 秒)与之前研究报告相比更为有利。其次,我们的研究结果表明,降低刺激强度仅会稍微降低突发代码序列的准确度至 94.2%,同时会显着改善用户体验。总之,这些结果证明了所提出的突发代码在性能和可用性方面推进反应式 BCI 的巨大潜力。收集的数据集以及所提出的 CNN 架构实现均通过开放存取存储库共享。
Engineering/Electrical and/or Electronics Engineering/ Production Engineering/Industrial Engineering and/or Design/ Aerospace and/or Aeronautical Engineering/ Civil and/or Structural Engineering/ Instrumentation and Control/ Metallurgical and/or Materials Engineering/ Engineering Physics/Applied Mechanics/ Ocean Engineering and/or Naval Architecture/ Engineering Design/ Biotechnology and/or Bio Engineering/ Energy Science and Engineering/ Nuclear Engineering/聚合物科学和/或工程/纺织工程/物理/数学的MSC或同等学位BE/BTECH/ME/ME/MTECH/MTECH/MS/MSC学位
摘要 增材制造 (AM) 正迅速成为汽车、航空航天、医疗等许多行业制造零部件的主导技术。具有更高沉积速率的电弧增材制造 (WAAM) 技术正在成为 AM 中的突出技术。基于线材的增材制造需要高热量输入来熔化线材进行沉积。当组件建立在多层上时,它涉及各种加热和冷却循环,从而导致不均匀的热负荷。由于重复的循环,残余应力会滞留在零件内部并导致各种缺陷,如裂纹、变形、翘曲、部件的生命周期缩短等。需要降低残余应力以最大限度地减少缺陷。本文讨论了预热和锤击压缩载荷等多种技术对最大限度地减少残余应力的影响。预热基材(沉积发生在其上)将降低热梯度,从而降低残余应力。由于残余拉应力是在基于线材的熔覆过程中产生的,而该应力可通过施加压缩载荷来消除,因此,我们内部开发了一种用于施加压缩残余应力的气动装置,以尽量减少残余拉应力。在这项工作中,我们准备了四种不同的样品;1) 沉积状态(未进行预热和锤击),2) 沉积后进行锤击,3) 预热后沉积,4) 预热后沉积后进行锤击,以通过 X 射线衍射法测量残余应力。研究发现,预热和锤击单独可尽量减少残余应力,而综合效果则表明残余拉应力大大降低。
爆发了非凡的破坏性事件,例如,Covid-19的大流行极大地影响了全球供应链(SCS)的有序操作,并可能导致SC崩溃。监管行动,例如大流行期间的政府干预措施,可以大大减轻破坏的传播(即,涟漪效应)并提高了SC的生存能力。但是,专注于破坏传播管理的现有作品并未考虑这种干预措施的可能性。受到这一事实的激励,在这项研究中,我们研究了具有有限干预预算的多Echelon SC中的新破坏传播管理问题。的目的是最大程度地减少SC中目标参与者的概率衡量的破坏风险。为此,开发了一种新颖的方法,结合了因果贝叶斯网络(CBN),DO-Calculus和数学编程。特别是,建立了两个混合成员非线性编程模型以确定适当的干预措施。为了增强提出的数学模型,提出了两个有效的不平等现象。然后,开发出一种问题特异性遗传算法(GA)来处理大规模的问题实例。进行了案例研究的数值实验,并进行了随机生成的实例,以评估所提出模型的效率,有效的不等式和GA。基于实验分析,有了管理洞察力。
Chubb是用于指代Chubb Limited的子公司提供保险和相关服务的营销名称。有关这些子公司的列表,请访问我们的网站www.chubb.com。由ACE American Insurance Company及其总部位于美国的Chubb承销公司分支机构提供的保险。所有州都不可用所有产品。此材料仅包含产品摘要。覆盖范围受实际发布的政策语言的约束。剩余线路保险仅通过许可的盈余生产商出售。本文介绍的材料本质上是咨询的,可作为用于维护预防损失计划的专业保险顾问一起使用的资源。它不是旨在替代法律,保险或其他专业建议的替代品,而是仅用于一般信息。您应就您可能遇到的任何法律或技术问题咨询知识渊博的法律顾问或其他知识渊博的专家。Chubb,霍尔米尔路202号,怀特豪斯车站,新泽西州0889-1600。
关于电动汽车的出版物。在EV计量学以及理解和应用EV生物学方面已取得了重要的进步。然而,由于EV命名法的挑战,与非详细细胞外颗粒的分离,表征和功能研究,由于基本生物学到临床应用的范围,障碍仍在实现从基本生物学到临床应用的潜力。为了解决这个迅速发展的领域中的挑战和机会,国际细胞外囊泡学会(ISEV)更新了其“最小的细胞外囊泡研究信息”,该学会于2014年首次发布,然后于2018年出版为Misev2014和Misev2018和Misev2018,并进行了评估。当前文档MISEV2023的目标是为研究人员提供可用方法的更新快照及其对电动汽车从多个来源的生产,分离和表征的优势和局限性,包括细胞培养,身体流体和实心组织。除了在电动汽车研究的基本原理中介绍最新的艺术状态外,该文档还涵盖了目前正在扩大该领域边界的先进技术和方法。MISEV2023还包括有关EV释放和摄取的新部分,以及对研究电动汽车的体内方法的简短讨论。汇编来自ISEV专家工作队和1000多个研究人员的反馈,该文档传达了电动汽车研究的现状,以促进稳健的科学发现并更快地推动该领域的前进。
除非您真的放慢脚步,而且天气很差,否则实际上并不是要在参加比赛时穿着。这是“紧急 /安全”层,可以使您保持温暖,当您扭动脚踝,拉腿筋并放慢脚步或不得不停止移动并等待接送或救援。接下来是您的生存袋!
量子聚类 (QC) 是一种基于量子力学的数据聚类算法,通过用高斯函数替换给定数据集中的每个点来实现。高斯函数的宽度为 𝜎 值,这是一个超参数,可以手动定义和操纵以适应应用。数值方法用于查找与聚类中心相对应的量子势的所有最小值。在此,我们研究了表达和查找与二维量子势的最小值相对应的指数多项式的所有根的数学任务。这是一项杰出的任务,因为通常无法通过分析解决此类表达式。但是,我们证明,如果所有点都包含在大小为 𝜎 的方形区域中,则只有一个最小值。这个界限不仅在通过数值方法寻找解决方案的数量方面有用,它还允许提出一种“每个块”的新数值方法。该技术通过将某些粒子组近似为加权粒子来减少粒子数量。这些发现不仅对量子聚类问题有用,而且对量子化学、固体物理和其他应用中遇到的指数多项式也有用。
要分析提供HV-FHV服务的运营车辆的成本,了解HV车队的特征很重要。TLC保留了注册以提供FHV服务的所有车辆的列表,该服务包括传统的涂装汽车和豪华轿车服务以及HV-FHV服务。FHV列表包括有关车辆识别编号(VIN),TLC板号的信息,如果车辆配备了WAV和所有权数据。板号与包含HV-FHV Trip信息的文件匹配,以识别列表中用于HV-FHV Trips的FHV,直到2024年7月15日。VIN用于确定燃料类型,制造,型号,年和车身类别。还根据每辆车在2024年1月的六个月内执行的HV-FHV旅行的平均每月数量编制了数据。
09 Maggio 2025 1°会话:概述dell'immunologia e Immano-Moncologia di di基础(模质:Andrea Botticelli)16.30 - 17.00拟合和“不适合”条件中的免疫系统(F. granucci)17.00 - 17.00 - 17.00 - 17.00 - 17.00 - 17.00 - 17.00 - session section section the Immune sistrion:Cd8+ The+ The+ the+ The+ The+ The+ The+ The Marrin+ CD8+ CD8+ CD8+ CD8+ CD8+ cd8+ cd8+ cd8肿瘤学中的免疫细胞(Moderatore:Alberto Zambelli)17.30 - 18.00免疫逃避:T细胞(S. Gluck)18.00 - 19.00临床连接:乳腺癌(Me。cazzaniga)10 Maggio 2025 3°Sessione:检查点封锁和药物偶联的抗体(椅子:A。Torsello)8.30-9.00检查点封锁和药物偶联的抗体机制和肿瘤反应:根据肿瘤类型有差异吗?(M.V.Dieci) 9.00 – 10.00 Checkpoint blockade: which kind of toxicities and how we can prevent/manage them (M. Lambertini, A. Lania) 10.00 – 10.30 Il ruolo dell'infermiere e gli skills necessari (D. Ausili) 10.30 – 11.00 Break 4° SESSIONE: TECHNOLOGIES AND TOOLS (Chair: A. Botticelli, Roma) 11.00– 11.30 The role of digital免疫检查点抑制剂时代(N. FUSCO)11.30 - 12.00 ngs:如何,何时,多久,哪个信息?(U. Malapelle)5°模块:Metodi A数据分析Nella Ricerca BioMedica(主席:Gerratana,UD,UD)12.00 - 12.30临床数据科学 - 如何使用新的免疫检查点抑制剂(G. Valsecchi)(G. Valsecchi)12.30 - 13.00密钥元素和方法设计临床研究(M.C. piccirillo)obiettivipiccirillo)obiettivi