■Intellectual property rights: Japanese application 2023-175606 (application 2023-10-10) Name of the invention: Methods for labeling inosine bases, detection methods for detecting inosine bases, sequencing methods for sequencing nucleic acids containing inosine bases, inosine base labeling agents, and kits JST Patent application support system (PC T): S2023-0543-N0 Name of the invention: A Novel Technique to Explore Adenosine Deamination via Inosine Chemical Labeling and Affinity Molecular Purification ■Name of public funding projects utilized: AMED Bridge Research Promotion Project Seeds A (Main) 2022基础研究B(总统)(总裁)2022-2024基础研究B(总统)(总统)2019-2021支持研究活动开始(总统)2018年挑战研究(开发)(共享)(共享)2024-2026
腺苷到肌苷 (A-to-I) 编辑是一种保守的真核 RNA 修饰,有助于发育、免疫反应和整体细胞功能。RNA 编辑模式在不同细胞和组织类型之间可能存在显著差异,而过度活跃的 A-to-I 特征则表明存在多种疾病,包括癌症和自身免疫性疾病。由于这些差异具有生物学和临床重要性,因此迫切需要有效的方法来测量细胞 RNA 中的整体 A-to-I 编辑水平。当前的标准方法依赖于 RNA-seq 来间接检测编辑位点,这需要大量时间和材料投入以及大量的计算分析。在这里,我们利用核酸内切酶 V (EndoV)(它特异性地与 RNA 中的肌苷结合)来开发基于蛋白质的化学发光生物测定法,以直接分析 A-to-I RNA 编辑活性。我们之前展示了 EndoV 可以在 RNA 测序之前结合并丰富 A-to-I 编辑的转录本,现在我们利用这一活性构建 EndoV 连接免疫吸附测定 (EndoVLISA),作为一种快速的、基于板的化学发光方法,用于测量细胞 RNA 中的全局 A-to-I 编辑特征。我们首先使用化学合成的寡核苷酸优化和验证我们的测定方法,说明对 RNA 中的肌苷具有高度选择性和灵敏度的检测。然后,我们展示了对处理过的细胞系中肌苷含量的快速检测,证明了与当前标准 RNA 测序方法相当的性能。最后,我们部署了 EndoVLISA 来分析正常和患病人体组织中的差异 A-to-I RNA 编辑特征,说明了我们的平台作为诊断生物测定的实用性。总之,EndoVLISA 方法经济高效、简单易用,并且使用常见的实验室设备,为研究 A-to-I 编辑提供了一种高度可用的新方法。此外,多孔板格式使其成为第一个适用于直接高通量量化 A-to-I 编辑的检测方法,可用于疾病检测和药物开发。
图 1. (A) 起始 DNA 序列,其中包含目标碱基对 (A:T)。(B) 腺嘌呤碱基编辑器 (ABE) 由进化的 TadA* 脱氨酶 (淡紫色) 和部分失活的 CRISPR-Cas 酶 (灰色) 组成。碱基编辑器与与向导 RNA (洋红色) 互补的目标序列结合,并暴露一段单链 DNA。(C) 脱氨酶将目标腺嘌呤转化为肌苷 (DNA 聚合酶将其读取为鸟嘌呤),Cas 酶切口 (▲) 另一条链。(D) 切口链被修复,完成从 A:T 到 G:C 碱基对的转换。
碱基编辑器 (BE) 是一种基因组编辑剂,可高效、特异地安装点突变。由于 BE 依赖于尿嘧啶和肌苷 DNA 损伤中间体(而不是双链 DNA 断裂或 DSB),因此有人推测 BE 依赖于比 DSB 依赖型基因组编辑方法更普遍的 DNA 修复途径,而 DSB 依赖型基因组编辑方法需要仅在细胞周期的某些阶段活跃的过程。我们在此报告了使用细胞同步实验对碱基编辑的细胞周期依赖性进行的首次系统研究。我们发现,切口酶衍生的 BE(在尿嘧啶或肌苷碱基对面引入 DNA 骨架切口)独立于细胞周期发挥作用,而非切口 BE 高度依赖于 S 期(DNA 合成期)。我们发现,胞嘧啶碱基编辑过程中 G1(生长期)的同步会导致 C • G 到 A • T“副产物”引入率显著增加,这可用于发现精确 C • G 到 A • T 碱基编辑的新策略。我们观察到 DNA 损伤修复途径的内源表达水平足以将碱基编辑中间体加工成所需的编辑结果,并且碱基编辑过程不会显著扰乱转录水平。总体而言,我们的研究提供了机制数据,证明了切口酶衍生的 BE 在整个细胞周期内进行基因组编辑的稳健性。
基因组编辑工具,如锌指核酸酶、转录激活因子样效应核酸酶、CRISPR-Cas 系统和 CRISPR-Cas 衍生物(胞嘧啶和腺苷碱基编辑器),已广泛应用于基因组操作,并显示出它们的治疗潜力。除了基因组编辑技术之外,RNA 碱基编辑技术也得到了开发 1 。由于 RNA 编辑是可逆的、可调控的,并且不会导致基因组的永久性改变,因此它在治疗应用中可能具有一定的优势。对于腺苷的 RNA 编辑,作用于 RNA 的腺苷脱氨酶 (ADAR) 家族的成员,如 ADAR1(异构体 p110 和 p150)和 ADAR2(参考文献 2、3),已被设计用于将腺苷 (A) 精确转化为肌苷 (I) 1 。 ADAR1/2 的催化底物是双链 RNA,ADAR1/2 的脱氨酶结构域负责 A 到 I 的 RNA 编辑 4、5。肌苷被识别为鸟苷 (G),并在随后的细胞翻译过程中与胞苷 (C) 配对 3。为了实现靶向 RNA 编辑,ADAR 蛋白(或其脱氨酶结构域 ADAR DD)已与多种 RNA 靶向模块融合,例如 λ N 肽 6 – 8、SNAP 标签 9 – 13 和 Cas13 蛋白 14。此外,可以利用带有 R/G 基序的工程向导 RNA 与异位表达的 ADAR1 或 ADAR2 蛋白偶联来实现靶向 RNA 编辑 15 – 18。然而,外源编辑酶的异位表达与几个问题有关,包括基因组和/或 RNA 转录物的大量全局脱靶编辑 19 – 23 、免疫原性 24 – 27 、致癌性 28 – 30 和递送障碍 24 。 Stafforst 团队和我们自己报告的两种 RNA 编辑技术 RESTORE 31 和 LEAPER 32 利用内源性 ADAR 对 RNA 进行可编程编辑,而无需引入
图1 Yarrowia脂溶性固体箭头中脂质代谢的概述:化学转换和运输反应,虚线箭头:多个化学转换步骤,虚线和箭头:代表N-限制后果。AMP,单磷酸腺苷; CIT,柠檬酸盐; DAG,二酰基甘油; DHAP,二羟基丙酮磷酸盐; F6P,果糖6-磷酸盐; FA,脂肪酸; FBP,果糖1,6-双磷酸;烟雾,富马酸; G3P,甘油3-磷酸盐; G6P,葡萄糖6-磷酸盐; GA3P,3-磷酸甘油醛; ICIT,异核酸; Imp,肌苷一磷酸; LPA,溶物磷脂酸;马尔,苹果; mal -coa,丙二酰辅酶A; NH4,铵; OAA,草乙酸; PA,磷脂酸; pyr,丙酮酸; suc,琥珀酸;标签,三乙二醇[可以在wileyonlinelibrary.com上查看颜色图]AMP,单磷酸腺苷; CIT,柠檬酸盐; DAG,二酰基甘油; DHAP,二羟基丙酮磷酸盐; F6P,果糖6-磷酸盐; FA,脂肪酸; FBP,果糖1,6-双磷酸;烟雾,富马酸; G3P,甘油3-磷酸盐; G6P,葡萄糖6-磷酸盐; GA3P,3-磷酸甘油醛; ICIT,异核酸; Imp,肌苷一磷酸; LPA,溶物磷脂酸;马尔,苹果; mal -coa,丙二酰辅酶A; NH4,铵; OAA,草乙酸; PA,磷脂酸; pyr,丙酮酸; suc,琥珀酸;标签,三乙二醇[可以在wileyonlinelibrary.com上查看颜色图]
摘要 转移 RNA (tRNA) 在蛋白质生物合成中起着核心作用。转录后 RNA 修饰影响 tRNA 的功能和稳定性。在这些修饰中,RNA 编辑是生命三个领域中广泛存在的 RNA 修饰。作用于 tRNA 的腺苷脱氨酶 (ADAT) 家族的蛋白质是在 20 多年前发现的。它们在 tRNA 成熟过程中催化腺苷脱氨为肌苷 (A - 到 - I) 或胞苷脱氨为尿苷 (C - 到 - U)。研究最多的例子是原核或真核 tRNA 反密码子中 tRNA 摆动位置的 TadA 或 ADAT2 / 3 介导的 A - 到 - I 转换。本综述提供了有关不同生命领域中 tRNA 的 A 到 I 和 C 到 U 编辑的详细信息,介绍了有关 DNA 编辑的 ADAT 的最新发现,最后评论了 ADAT3 基因突变与智力障碍之间的关联。
心血管疾病(CVD)是一类对全球健康有重大影响并是导致死亡的主要原因的疾病。核糖核酸(RNA)中大量的化学碱基修饰与心血管疾病相关。细胞中存在着各种各样的核糖核酸修饰,其中腺苷脱氨酶依赖性修饰是最常见的核糖核酸修饰之一。作用于核糖核酸的腺苷脱氨酶1(Adenosine deaminase acting on RNA 1)是一种广泛表达的双链核糖核酸腺苷脱氨酶,它通过催化腺苷在目标核糖核酸的特定位点脱氨形成肌苷(A-to-I)。本综述对腺苷脱氨酶RNA-1的结构进行了全面的概述,并总结了ADAR1介导的核糖核酸编辑在心血管疾病中的调控机制,表明腺苷脱氨酶RNA-1是心血管疾病的一个有希望的治疗靶点。
简单的摘要:长期非编码RNA在转录和翻译水平上都是基因表达的关键调节剂,它们的改变(在表达或序列中)与肿瘤发生和肿瘤进展有关。RNA编辑具有独特的能力,可以改变RNA序列而不改变基因组DNA的完整性或序列,而腺苷对插入(A-TO-I)RNA编辑是人类最常见的事件。具有转录后改变遗传信息的能力,RNA编辑是转录组和蛋白质组富集的重要参与者。但是,如果放松管制,它可能有助于细胞转化。在本文中,我们在lncrna进行了第一个从头编辑调查,表明RNA编辑是一种普遍存在的现象,涉及lncrnas对脑和脑癌很重要。我们的研究将打开一项新的研究领域,其中lncRNA和RNA编辑之间的相互作用可以增加对癌症的新见解。