1 绿色农药国家重点实验室、教育部绿色农药与农业生物工程重点实验室、贵州大学精细化工研发中心,中国贵阳,2 美国佛罗里达大学柑橘研究与教育中心昆虫学与线虫学系,佛罗里达州阿尔弗雷德湖,美国,3 开罗大学理学院昆虫学系,埃及吉萨,4 伊苏布里亚大学生物技术与生命科学系,意大利瓦雷泽,5 BAT 中心-生物启发农业环境技术校际研究中心,那不勒斯费德里科二世大学,意大利那不勒斯,6 西华师范大学西南野生动植物资源保护教育部重点实验室,中国南充,7 法国雷恩大学 CNRS,ECOBIO(生态系统、生物多样性、进化),UMR 6553,雷恩,法国,8 生物多样性与生态系统动力学研究所(IBED),进化生物学和种群生物学,阿姆斯特丹大学,荷兰阿姆斯特丹,9 伊利诺伊大学生物科学系,美国伊利诺伊州芝加哥和
大多数昆虫都能在其生命周期的关键阶段(例如繁殖)中改变气味景观,以便与其同伴进行交流。他们在附近环境中释放信息素,挥发性化合物由具有异常特异性和敏感性的同一物种的昆虫检测到。有效的信息素检测是害虫管理的有趣杠杆。使用信息素传感器对害虫的精确和早期检测是在出没之前的害虫管理策略。在本文中,我们开发了一个生物学知情的逆问题框架,该框架利用信息素传感器网络中的时间信号来构建昆虫存在图。使用种群动力学PDE残差,通过特定惩罚的平均值在反问题中引入了先前的生物学知识。我们将在简化的玩具模型中对生物信息的惩罚进行基准使用其他正规化术语,例如Tikhonov,Lasso或复合惩罚。我们使用classical比较标准,例如目标重建误差或在害虫散布的jaccard距离。,但我们还使用了更多的任务标准,例如推理过程中的信息传感器数量。最后,在秋季军虫(Spodoptera Frugiperda)的农业景观中,在现实的有害生物侵扰的背景下解决了反问题。
1 piauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piaui
在基于产卵周期和授精处理的比较中观察到基因表达的差异。在产卵初期,与未受精相比,仅使用稀释剂就会导致抗菌基因表达增加、细胞增殖、分化和重塑。相比之下,精液处理可预测先天免疫细胞通路的激活。在产卵高峰期,与假处理相比,组蛋白去乙酰化酶 7 样 mRNA 的表达更高,同时免疫钙调磷酸酶-NFAT 信号通路预计受到抑制。与产卵初期相比,精液处理导致产卵高峰期精子结合蛋白(包括恶性脑肿瘤 1 样蛋白和透明带 1 中的缺失蛋白)的表达更高。最后,与假手术相比,精液治疗导致产卵结束时尾加压素 2B 表达增加,包括 β-防御素 2、导管素 2 和 3、唾液酸粘附素、吸引素样 1、溶酶体相关膜蛋白 3、白细胞衍生的趋化因子-2 和肝细胞生长因子在内的抗菌基因表达减少。
本课程旨在提供对现代食品(供应)系统的全面了解,强调一般和当前的科学见解,始终从农业和食品经济学的角度出发。学生将获得这些系统固有复杂性的基础知识。涵盖的主题包括全球粮食供应挑战介绍,例如人口增长、城市化和资源管理,以及粮食需求和消费模式。关键研究领域还包括农业结构和农业发展、食品分销以及食品加工和食品工业的作用。该课程研究南蒂罗尔等特定区域背景,并解决关键的可持续性问题,例如对食品、饲料和能源的竞争需求、营养与健康之间的关系以及气候变化对粮食供应的影响。其他主题包括区域性的重要性、减少粮食浪费的策略以及未来可持续粮食供应系统的发展。这种整体方法使学生能够有效地分析和应对现代食品系统的挑战。
目的:本研究旨在研究认知情绪调节策略在儿童创伤,危险的酒精和药物使用以及性强迫之间的关系中的中介作用。方法:研究涉及来自安卡拉大学的303名参与者。数据收集包括儿童创伤问卷,性强迫量表,成瘾概况指数筛查量表和认知情绪调节问卷。使用相关性,简单的线性回归和模型4分析了变量之间的关系,以进行中介分析。结果:研究发现,儿童创伤可以显着预测危险的酒精和使用,性强迫以及适应不良的认知情绪调节策略。此外,发现适应不良的情绪调节策略会显着影响性强迫。该分析还表明,儿童创伤通过这些不良适应性策略影响性强迫,突出了认知情绪调节在成瘾行为发展中的关键作用。结论:儿童创伤和认知情绪调节策略是成瘾风险过程中的重要因素。这些结果表明,针对情绪调节的干预措施可以帮助解决与创伤和成瘾有关的适应不良行为,从而为研究人员和从业者提供宝贵的见解。关键字:性强迫,儿童创伤,情绪调节,危险的酒精使用
辐射风险•为了安全地执行,您的程序需要在X射线指导下插入该行。X射线是一种电离辐射。研究表明,暴露于高剂量的电离辐射的人在暴露几年或几十年后会增加患癌症的机会。但是,尽管更复杂或更困难的病例可能需要更高的辐射剂量,但与此过程相关的辐射暴露量很小。•是对您的医生和放射医生的评估,将执行该程序的好处大于暴露于辐射的风险。专业的放射科医生和放射线照相师将确保在手术过程中保持辐射暴露尽可能低。•我对在此过程中接触辐射的风险有任何疑问,您可以在同意过程中与将执行您的程序执行的放射科医生进行进一步讨论。•如果您认为自己可能怀孕,请通知临床团队。
[3] 基因编辑技术的出现提供了一种更精确的方法,可以在特定的基因组位置有针对性地插入或修改调控元件。成簇的规律间隔的短回文重复序列/CRISPR 相关蛋白 9(CRISPR/Cas9)彻底改变了基因编辑领域,为研究人员提供了精确基因改造的有力工具。关键的突破出现在 2012 年,当时 Emmanuelle Charpentier 和 Jennifer Doudna 证明 CRISPR/Cas9 系统可以被编程来切割特定的 DNA 序列,为其作为基因组编辑工具的应用奠定了基础 [4] ,这一发现后来获得了 2020 年的诺贝尔化学奖。事实证明,这项技术对于研究基因功能和改良作物性状非常有价值。虽然 CRISPR/Cas9 已广泛用于基因敲除,但它在通过同源定向修复(HDR)进行基因上调方面的应用仍在发展,尤其是在水稻中 [5] 。基于 HDR 的基因编辑需要同时将 CRISPR/Cas9 表达系统和 DNA 修复模板递送到细胞中。该过程可以通过
随着人们对食品安全、海鲜欺诈和非法、未报告和无管制 (IUU) 捕捞的担忧日益增加,提高海鲜的可追溯性和透明度已成为海鲜行业的首要任务。这引发了验证昆虫原料真实性的努力。CIIMAR 的新方法通过确认原料来自合法来源,确保了透明度和质量,并促进了可持续性。
景观管理中的关键问题,无论是公共还是私人,是对影响植被,生态系统健康以及因此生态系统服务(ESS)的干扰事件的缓解。尽管许多研究发现由于昆虫侵扰而导致的树木死亡率显着,但仍然对这些侵扰如何改变ESS及其相关的经济价值仍然没有足够的了解。解决这一研究差距可以帮助森林经理和决策者精炼和实施自适应管理实践和政策,同时增强森林及其ESS的弹性。我们调查了树皮甲虫暴发对三种ESS(木材供应,保留率和碳固存)在北加州和内华达州北部的Tahoe地区的影响。使用景观仿真模型Landis-II,我们研究了业务与惯常的管理方案和增强的管理场景之间的差异,该场景在地上树生物量和受甲虫暴发影响的ESS数量方面进行了研究。由于昆虫侵扰也受到气候的影响,因此两个管理场景中的每一个都认为三种不同的气候场景:一种具有平均历史气候的场景(没有气候变化);从气候跨学科研究模型中的较温暖,更湿的场景(Miroc);以及来自中心国家中心的较干燥,更干燥的场景(CNRM)。的结果表明,温暖,更干燥的气候导致甲虫引起的树木死亡率比潮湿,凉爽的气候更严重,从而对ESS产生更大的负面影响。每年的ES值估计损失约为0.2至80万美元。增强的管理层比业务态度更有能力,可以防止对树木和ESS的甲壳虫损害。