埃及伊蚊(Linnaeus,1762)是登革热和其他虫媒病毒感染性疾病的主要媒介。对这种重要媒介的控制高度依赖于杀虫剂的使用,尤其是拟除虫菊酯。在拟除虫菊酯杀虫剂的目标位点,即从越南和柬埔寨采集的埃及伊蚊的电压门控钠通道 (Vgsc) 上,检测到了高频率的 L982W 替换(>78%)。在这两个国家也证实了具有伴随突变的等位基因 L982W + F1534C 和 V1016G + F1534C,它们在柬埔寨金边的频率很高(>90%)。具有这些等位基因的菌株表现出的拟除虫菊酯抗性水平明显高于任何其他已报告的野外种群。 L982W变异株尚未在除越南和柬埔寨以外的中南半岛任何国家发现,但它可能正在向亚洲其他地区蔓延,对登革热及其他伊蚊传播传染病的控制造成前所未有的严重威胁。
由于其在健康,药品,催化,能量和材料等行业中的多次应用,近年来,纳米技术引起了很多关注。这些纳米颗粒的大量用途范围从1到100 nm。如今,需要可持续的农业。纳米化学物质已被用作杀虫剂,肥料和植物生长的潜在药物。纳米材料现在已经用作控制昆虫,真菌和杂草的替代方法。作为食物包装中的抗菌剂,使用了一系列纳米材料,银纳米颗粒是最受欢迎的纳米颗粒。除了其抗菌特性外,还证明了由碳纳米管AG,TiO2,CEO2,Zn,ZnO,Fe,Cu,Cu,Si和Al组成的纳米颗粒对植物生长具有一定的有害作用。纳米颗粒在食品领域起着重要作用,在产生高质量的营养餐中。关键词:农业,食品工业,应用,纳米颗粒,农药,肥料,抗菌剂
单萜因其作为口味,香料,杀虫剂和能量浓厚的燃料而受到重视。微生物生物合成为这些重要分子提供可持续的生物合成途径,但生产水平仍然有限。在这里,我们引入了一种生物传感器驱动的微生物工程策略,以增强单类药物的产生,特别是针对Geraniol。使用Pyr1受体的诱变库(带有可延展结合口袋的植物ABA信号通路的多功能生物传感器),我们筛选了24个单键型,并鉴定出对八种响应于八种的Pyr1变体,包括Geraniol。在耐热酵母kluyveromyces Marxianus中表达了低背景,高度选择性的geraniol敏感的Pyr1变体,作为一种基于生长的生物传感器电路,从而可以快速应变工程。通过将geraniol敏感的Pyr1传感器与全基因组CRISPR-CAS9诱变方法耦合,我们确定了六个基因敲除,可增强香精醇的产生,从而增加了2倍的滴度。这项研究证明了PYR1生物传感器平台可以使快速应变工程和改善所需代谢物滴度的突变体的鉴定。
人类引起的全球变化正在极大地改变土壤微生物群落,这在维持关键的生态系统功能和服务方面起着至关重要的作用。全球变化最重要的驱动因素是气候变化(通过变暖和延长的干旱时期来表征)以及强烈的土地利用,而受精的营养丰富对土壤社区产生了重大影响。此外,微生物群落越来越多地暴露于各种压力源,包括重金属污染,微塑性污染,盐度增加,抗生素,杀虫剂,抗真菌剂和表面活性剂。然而,土壤微生物群落组成对多种相互作用因子的反应在很大程度上尚未探索。为了解决这一知识差距,该项目旨在研究微生物群落组成的变化,特别是细菌和真菌,以应对全球变化因素的全面套件。通过单独和组合检查这些因素,我们希望研究驱动土壤微生物群落变化的复杂相互作用及其对生态系统功能的更广泛含义。
Mouncey博士于2017年3月加入DOE联合基因组研究所,成为其20年历史的第四任主任。 Mouncey博士拥有近20年的工业生物技术私营部门的丰富研究和管理经验,以及二级代谢产物和合成生物学方面的研究专业知识。 Mouncey博士对微生物遗传学有着长期的兴趣,该遗传学始于他的教育,并在新泽西州Roche Vitamins,Inc。和瑞士的DSM Nutritional Products担任高级研究科学家,并担任Dow Agrosciiss in Dow Agrosciences的生物工程和生物处理和生物处理。 在行业期间,Mouncey博士指示研发团队,重点是对新型生产生物的发现,开发和商业化以及维生素,杀虫剂,杀菌剂,平台化学物质,化妆品和新作物特征的发酵过程。 除了担任JGI主管外,Mouncey博士还在JGI领导了二级代谢科学计划,他还参加了国家微生物群组数据合作的领导团队。 Mouncey博士还曾担任工业微生物学协会和生物技术学会主席2022-2023。Mouncey博士于2017年3月加入DOE联合基因组研究所,成为其20年历史的第四任主任。Mouncey博士拥有近20年的工业生物技术私营部门的丰富研究和管理经验,以及二级代谢产物和合成生物学方面的研究专业知识。Mouncey博士对微生物遗传学有着长期的兴趣,该遗传学始于他的教育,并在新泽西州Roche Vitamins,Inc。和瑞士的DSM Nutritional Products担任高级研究科学家,并担任Dow Agrosciiss in Dow Agrosciences的生物工程和生物处理和生物处理。在行业期间,Mouncey博士指示研发团队,重点是对新型生产生物的发现,开发和商业化以及维生素,杀虫剂,杀菌剂,平台化学物质,化妆品和新作物特征的发酵过程。除了担任JGI主管外,Mouncey博士还在JGI领导了二级代谢科学计划,他还参加了国家微生物群组数据合作的领导团队。Mouncey博士还曾担任工业微生物学协会和生物技术学会主席2022-2023。
化学物质自动洗涤器洗涤剂3自动4个地毯清洁剂和发现者6地毯保护剂9化学稀释剂9化学稀释表10脱脂剂表10除臭剂14稀释控制系统17消毒系统21洗碗机21洗碗机42环境面向环境24落地24层面饰26层面底面29个玻璃清洁剂31硬清洁剂36固定清洁剂49型杀虫剂42杀虫剂42杀虫剂42 Coatings 50 Restroom Cleaners 51 Seasonal 55 Specialty Products 56 Stripper 58 Stripping Tools 59 ABSORBENTS 60 BROOMS & BRUSHES 62 DUST CONTROL 68 EQUIPMENT 72 FEMININE HYGIENE PRODUCTS 74 FLOOR PADS & SCREENS 75 GLOVES 79 HAND PADS & SPONGES 82 PACKAGING MATERIALS 84 PAPER PRODUCTS 85 SAFETY SUPPLIES 91 SMOKING URNS 94 SQUEEGEES 95 TRASH BAGS 98 TRASH RECEPTACLES 100公用车97步行垫101湿拖把103
两个夏天前,我对这些化学物质的有害作用有第一手经验。当我带狗莫莉(Molly)散步时,我注意到库珀(Cooper)的鹰在我的诺沃克(Norwalk)家的草坪上。我认为这很奇怪,因为鹰没有在我的面前飞走。当我和莫莉从我们的步行中回来时,鹰还在那儿,躺在背上并在周围拍打。意识到这是受伤的,我称韦斯顿野生动物保护区克里斯汀的小动物的克里斯汀·佩雷尼(Christine Peyreigne)。根据Peyreigne女士的说法,鹰的疾病可能是由杀虫剂和有毒物质引起的:“库珀的鹰队倾向于吃鸣禽……而鸣禽吃昆虫,”她说。“因此,当库珀的老鹰在喷洒大量农药的地区吃鸣禽时,有时我们会看到毒性。”幸运的是,克里斯汀的小动物能够拯救鹰并将其重新发布到野外。,但大多数被这些化学物质中毒的动物并不幸运。这一事件使我对农药,啮齿动物和其他化学物质如何影响野生动植物睁开了眼睛。
摘要该研究的目的是评估功效并确定某些植物衍生的单苯甲酸烯和丝兰提取物的作用的有毒机制,作为针对红粉甲虫,Tribolium castaneum的化学杀虫剂的替代方法。Carvone,1,8-Cineole,Cuminaldehyde和Linalool以及Yucca Schidgera提取物是对照剂,其对红粉甲虫的功效在实验室中进行了测试并与Malathion进行了比较。评估功效的标准是测试化合物对成人死亡率和红粉甲虫后代的影响。此外,还研究了对照剂对T. castaneum T. castaneum中某些酶(乙酰胆碱酯酶,淀粉酶和碱性磷酸酶)的影响。此外,研究了测试的控制测量对处理过小麦颗粒的体重减轻的影响。测试的物质在成人死亡率和后代产生方面具有很高的控制T. castaneum的能力,尤其是在用作熏蒸剂时。在成人死亡率中,马拉硫酮显示出对T. castaneum作为熏蒸剂的最高潜力,其次是Carvone,Yucca提取物,Cuminaldehyde,Linalool和1,8-Cineole,LC 50值为0.05,331.5,331.5,331.5,365.1,365.1,372.2,372.2,460.5 mg - 467.5 mg - 1000 cm - 2.2000 cm - 2000 cm - 2000 cm-2000 cm-2,2000 cm-2,2000 cm-2,2000 cm-2,2000 cm-
Benelli等。 (2023)最近回顾了欧洲葡萄蛾(EGVM)洛伯西亚botrana(Denis&Schiffermüller)(Lepidoptera:Tortricidae)的生物学,生态和侵入性,概述了新的研究进展。 其控制的策略从Götz(1939)的开拓者作品开始,他们首先表明EGVM女性能够吸引男性交配。 在第一个性信息素(1959年)对第一个性信息素化学鉴定之前,他预先将基于信息素的控制的概念预先鉴定。 甚至在以前,Silvestri(1912),Feytaud(1913)和Marchal(1912)进行了有关EGVM生物学和自然敌人的第一个关键自然史研究。 值得注意的是,他们的研究中已经将一些生物防治问题视为未来的有效控制选择。 有趣的是,在合成杀虫剂发作之前的几十年,卵寄生虫trichogramma spp。 (膜翅目:trichogrammatidae),昆虫病作用真菌和有效的幼虫寄生虫,坎普莱克斯·帕皮塔(Campoplex Cackoplex Capoplex Capoplex tor Aubert(Hymenoptera:iChneumonidae)),由几位作者研究(Coscollá1997; ioriatti et al。 2012; Reineke&Thiéry2016; Thiéry等。 2018)。Benelli等。(2023)最近回顾了欧洲葡萄蛾(EGVM)洛伯西亚botrana(Denis&Schiffermüller)(Lepidoptera:Tortricidae)的生物学,生态和侵入性,概述了新的研究进展。其控制的策略从Götz(1939)的开拓者作品开始,他们首先表明EGVM女性能够吸引男性交配。在第一个性信息素(1959年)对第一个性信息素化学鉴定之前,他预先将基于信息素的控制的概念预先鉴定。甚至在以前,Silvestri(1912),Feytaud(1913)和Marchal(1912)进行了有关EGVM生物学和自然敌人的第一个关键自然史研究。值得注意的是,他们的研究中已经将一些生物防治问题视为未来的有效控制选择。有趣的是,在合成杀虫剂发作之前的几十年,卵寄生虫trichogramma spp。(膜翅目:trichogrammatidae),昆虫病作用真菌和有效的幼虫寄生虫,坎普莱克斯·帕皮塔(Campoplex Cackoplex Capoplex Capoplex tor Aubert(Hymenoptera:iChneumonidae)),由几位作者研究(Coscollá1997; ioriatti et al。2012; Reineke&Thiéry2016; Thiéry等。2018)。
在几种物种中,抗性和易感个体之间的表型差异与基因表达的组成型变化有关。例如,在对神经毒性杀虫剂有抵抗力的个体中观察到了排毒基因家族的构型过表达。这表明了代谢解毒在抗性中的作用,在某些情况下,允许允许使用哪些基因参与耐药的遗传方法。细胞色素P450单糖酶和三磷酸腺苷(ATP)结合盒(ABC)转运蛋白的情况就是这种情况。5,24 - 29除解毒基因之外,已经记录了编码角质层合成基因的过表达,并导致耐药性和易感性的独立物(即穿透性抗性)之间的表皮变化。30该证据突出了通常基于抗性表型的复杂性,并表明需要研究基因表达以充分理解昆虫抗性。与其他杀虫剂相反,抗药性个体中的表达情况已被广泛阐明,蚊子对CSIS的抗性表型的整个基因表达模式仍然被忽略了。在这里,我们的目标是通过分析蚊子CX的易感和耐DFB个体的构成基因表达来弥补这一差距。pipiens。
