。cc-by-nc-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
©2023 Elsevier Inc.此手稿版本可在CC-BY-NC-ND 4.0许可下提供https://creativecommons.org/licenses/by-nc-nc-nd/4.0/
宿主和肠道微生物群落之间的抽象共生对于人类健康至关重要。这种共生中的破坏与胃肠道疾病有关,包括炎症性肠病,以及淋巴结外疾病。不平衡的肠道微生物组或肠道营养不良以多种方式促进疾病频率,严重程度和进展。微生物组分类分析和代谢组学方法极大地改善了我们对肠道生物的理解。但是,仍需要澄清肠道营养不良的机制。这篇综述的目的是介绍寄生虫感染后或在改变盆地细胞变化的情况下形成的新的参与者和机制,揭示了Paneth和Tuft细胞之间存在关键的串扰以控制微生物组组成。
extended 2D Tinkham model Yue Liu, 1,2,† Yuhang Zhang, 1,2,† Zouyouwei Lu, 1,2,† Dong Li, 1,3,* Yuki M. Itahashi, 3 Zhanyi Zhao, 1,2 Jiali Liu, 1,2 Jihu Lu, 1,2 Feng Wu, 1,4 Kui Jin, 1,2,5 Hua Zhang,1 Ziyi Liu,1小居,1,2,5,** Zhongxian Zhao,1,2,5 1北京国家冷凝物质物理学实验室,物理研究所,中国科学院,中国100190,中国。2个物理科学学院,中国科学院,北京100049,中国。 3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。 4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。 5,中国广东523808的东瓜材料实验室。 摘要。 批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。 然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。 在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。 为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。2个物理科学学院,中国科学院,北京100049,中国。3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。 4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。 5,中国广东523808的东瓜材料实验室。 摘要。 批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。 然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。 在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。 为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。5,中国广东523808的东瓜材料实验室。摘要。批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。我们进一步证明了该模型在(Li,Fe)Ohfese和cetyltrimethyl铵(CTA +) - 钙化(CTA)0.5 SNSE 2超导体中的有效性,突出了其广泛的适用性。这项工作提供了对大量2D超导性的有价值的见解,并建立了扩展的2D Tinkham模型,用于定量提取插入的分层超导体中的固有超导性能,尤其是那些表现出明显的层间未对准的超导体。†这些作者也同样贡献。*联系作者:dong.li.hs@riken.jp **联系作者:dong@iphy.ac.cn
Microtus Fortis(M。Fortis)是中国唯一对Japonicum(S. japonicum)感染具有本质上抗性的哺乳动物。尽管如此,富氏杆菌对血吸虫的潜在抵抗机制仍不清楚。在这项研究中,我们使用液相色谱 - 质谱法(LC -MS)检测并比较了富氏菌和ICR小鼠之间的结肠水性提取物和血清代谢特征。We identified 232 specific colon aqueous extract metabolites and 79 specific serum metabolites of M. fortis infected with or without S. japonicum at two weeks compared with those of ICR mice, which might be closely correlated with the time-course of schistosomiasis progression and could also be used as indicators for the M. fortis against S. japonicum , for example, nonadecanoic acid, hesperetin, glycocholic酸,2-氨基苯甲酸,6-羟基二氮蛋白酶和精子定。和富集的途径得到了进一步的识别,我们的发现表明,japonicum链球菌感染诱导了各种代谢途径中涉及的代谢变化,包括氨基酸代谢,脂质代谢,ABC转运蛋白,中央碳代谢中的癌症和胆汁分泌。这些结果表明,在Japonicum S. japonicum感染前后,结肠水提取物和血清代谢特征在M. fortis和ICR小鼠之间显着差异,并将为fortis M. fortis抗性链球菌感染的潜在抗性机制提供新的见解,并确定有希望使用药物抗结杆菌的候选者。
紧急医疗服务(EMS)代表了保加利亚医疗基础设施的重要性,为急性医疗紧急情况提供了紧急护理和立即治疗。[1]随着全球折磨中对医疗保健系统的需求,EMS的作用变得更加迅速被淘汰。Pirogov于1951年出现,在保加利亚提供专门的多学科急诊护理方面已将自己定位为领导者。[4] uhatem“ N.I. Pirogov”因在各种医学专业中提供全面的24小时紧急服务而得到广泛认可,包括为紧急手术,儿科,烧伤治疗和毒理学提供创伤护理,为该地区的紧急医疗提供基准。[5,6]
糖尿病(DM),尤其是2型糖尿病(T2DM),是全球最普遍的慢性疾病之一,具有广泛的并发症,严重影响了患者的生活质量(1-3)。此外,糖尿病并发症,例如糖尿病性视网膜病(DR),糖尿病性肾病(DN),糖尿病足溃疡(DFUS),Sarcopenia和Neuropathy,尽管糖尿病护理的进步,但仍继续挑战临床管理(4-6)。与糖尿病相关并发症的基础机制涉及各种因素,包括代谢障碍,免疫反应,内皮功能障碍和线粒体损伤等(7-10)。为了更深入地了解与糖尿病相关并发症的病理生理学,我们组织了当前的研究主题,“对与糖尿病相关并发症的病理生物生物生物生物生物的新颖见解:在促进II的改善治疗策略的影响之后”,此后,II卷,旨在探索这些机构的成功I,旨在探索这些机制。该研究主题于2023年5月23日启动,并于2025年1月17日关闭。在这几个月中,收到了总共88项提交的意见,包括84项手稿和4个摘要。Finally, 37 high-quality articles were selected and published, covering a wide range of topics related to diabetes-related complications, including DR, DN, diabetic peripheral neuropathy (DPN), T2DM-associated periodontitis, metabolic regulation, immune-in fl ammatory processes, and emerging biomarkers ( Yang et al.,Li等。 ,Li等。 ,他等人。 ,Xu等。 )。,Li等。,Li等。 ,他等人。 ,Xu等。 )。,Li等。,他等人。,Xu等。)。这些研究不仅为推动这些并发症的机制提供了新的见解,还强调了潜在的生物标志物,
✉材料的信件和请求应向约瑟夫·D·布克斯鲍姆(Joseph D. Buxbaum),马克·J·戴利(Mark J.joseph.buxbaum@mssm.edu; mjdaly@atgu.mgh.harvard.edu; devlinbj@upmc.edu; roeder@andrew.cmu.edu; stephan.sanders@ucsf.edu; mtalkowski@mgh.harvard.edu。*作者及其隶属关系列表出现在本文的末尾。作者贡献M.E.T.,S.J.S,K.R.,B.D.,M.J.D,J.D.B。和S.B.G.设计了研究。M.E.T.,M.J.D.,J.D.B.,S.D.R.,S.B.G.,S.D. A.R.,F.T.,E.T.,G.C.,M.C.Y.C.,C.F.,E.G.,A.C.G. J.S.S.,E.H.C。和C.B.贡献了样本和生成的数据。M.E.T.,S.J.S.,M.J.D.,J.D.B.,S.D.R.,L.S.,B.M.,C.R.S. 和B.C. 协调的项目管理。 M.E.T.,S.J.S.,K.R.,B.D.,M.J.D.,D.J.C.,E.B.,A.N.S. S.D.,R.L.C.,H.B.,M.P.,F.K.S。 和J.M.F. 开发了方法论并进行了分析。 M.E.T.,S.J.S.,K.R.,B.D.,M.J.D.,J.D.B.,H.B.,M.P.,F.K.S。 和J.M.F. 写了这篇论文。M.E.T.,S.J.S.,M.J.D.,J.D.B.,S.D.R.,L.S.,B.M.,C.R.S.和B.C.协调的项目管理。M.E.T.,S.J.S.,K.R.,B.D.,M.J.D.,D.J.C.,E.B.,A.N.S. S.D.,R.L.C.,H.B.,M.P.,F.K.S。 和J.M.F. 开发了方法论并进行了分析。 M.E.T.,S.J.S.,K.R.,B.D.,M.J.D.,J.D.B.,H.B.,M.P.,F.K.S。 和J.M.F. 写了这篇论文。M.E.T.,S.J.S.,K.R.,B.D.,M.J.D.,D.J.C.,E.B.,A.N.S.S.D.,R.L.C.,H.B.,M.P.,F.K.S。 和J.M.F. 开发了方法论并进行了分析。 M.E.T.,S.J.S.,K.R.,B.D.,M.J.D.,J.D.B.,H.B.,M.P.,F.K.S。 和J.M.F. 写了这篇论文。S.D.,R.L.C.,H.B.,M.P.,F.K.S。和J.M.F.开发了方法论并进行了分析。M.E.T.,S.J.S.,K.R.,B.D.,M.J.D.,J.D.B.,H.B.,M.P.,F.K.S。 和J.M.F. 写了这篇论文。M.E.T.,S.J.S.,K.R.,B.D.,M.J.D.,J.D.B.,H.B.,M.P.,F.K.S。和J.M.F.写了这篇论文。
神经退行性疾病,包括阿尔茨海默氏症,帕金森氏症,亨廷顿和肌萎缩性侧索硬化症,是全球最重要的健康问题之一,其特征是神经元功能障碍,氧化压力,氧化应激,神经性炎症和蛋白质失误。绿茶多酚五氧化酚五氧化酚具有多方面的神经保护特性。 它通过自由基清除,抗氧化剂酶的激活以及线粒体功能的稳定来减少氧化应激。 它还通过调节关键信号通路来抑制神经炎症。 它抑制了帕金森氏症中阿尔茨海默氏症和α-核蛋白纤维化中淀粉样蛋白β的聚集,从而减弱了有毒蛋白的积累。 其在诱导自噬和促进突触可塑性的活性支持神经元的存活率和功能。 但是,生物利用度和代谢不稳定性的低位阻碍了其转化为诊所。 正在探索包括纳米颗粒封装,结构修饰和组合疗法的策略,以克服这些挑战。 未来的研究可能会建立上杂酸的盖酸酯,成为管理神经退行性疾病的可行候选人。绿茶多酚五氧化酚五氧化酚具有多方面的神经保护特性。它通过自由基清除,抗氧化剂酶的激活以及线粒体功能的稳定来减少氧化应激。它还通过调节关键信号通路来抑制神经炎症。它抑制了帕金森氏症中阿尔茨海默氏症和α-核蛋白纤维化中淀粉样蛋白β的聚集,从而减弱了有毒蛋白的积累。其在诱导自噬和促进突触可塑性的活性支持神经元的存活率和功能。但是,生物利用度和代谢不稳定性的低位阻碍了其转化为诊所。正在探索包括纳米颗粒封装,结构修饰和组合疗法的策略,以克服这些挑战。未来的研究可能会建立上杂酸的盖酸酯,成为管理神经退行性疾病的可行候选人。
唐氏综合症(DS),最常见的染色体畸变,是由于存在额外的21染色体副本而产生的。过表达的基因鉴定DS中有助于智力障碍(ID)对于了解所涉及的病理生理机制并发展新的药理疗法很重要。特别是,双重特异性酪氨酸磷酸化的基因剂量调节激酶1a(DYRK1A)和胱胱氨酰胺β合酶(CBS)的基因剂量对于认知功能至关重要。由于这两种酶最近是对ID治疗研究的主要靶标,因此我们试图破译它们之间的遗传关系。我们还使用过表达Cys4的细胞模型(酿酒酵母中CBS的同源物)结合了遗传和药物筛查,以进一步了解参与CBS活性调节的分子机制。我们表明,Yak1的过表达是酵母中dyRK1a的同源物,增加了Cys4活性,而GSK3β被鉴定为CBS的遗传抑制因子。此外,对通过基于酵母的药理筛查鉴定的药物靶向的信号通路的分析,并使用人HEPG2细胞确认,强调了AKT/GSK3β和NF-κB途径在CBS活性和表达调节中的重要性。综上所述,这些数据提供了对CBS的调节,尤其是通过AKT/GSK3β和NF-κB途径的DYRK1A和CBS之间的遗传关系,这应该有助于开发更有效的疗法,以减少DS患者的认知延迟。