摘要 虽然自动光学检测 (AOI) 对薄膜/无纺布/纸张等表面及其随后的转换/层压产品的功能越来越强大和通用,但部署到日常运营中有时会很困难,特别是在运营和驻地工程人员减少的情况下。因此,AOI 制造商必须将开发重点放在工具和方法上,以实现 AOI 系统在日常操作中基本上无人干预的目标,并尽可能简化其初始部署。这是使用各种形式的人工智能 (AI) 来实现的,这些人工智能可以自动执行诸如调整光照水平、检测水平和缺陷分类等任务。本文将介绍这些功能的一般工作原理,并展示其使用情况的研究。
一些警察只采用了国家道路警务战略的部分内容。有些警察无法向我们提供任何证据,证明他们采取了减少道路死亡的战略方法。合作机构——尤其是地方当局——通常不参与警察道路安全计划,这可能导致道路安全措施脱节、效率低下。除了一些明显的例外,警察无法证明他们的执法活动是基于对所在地区道路死亡和严重伤害原因的全面了解。最佳实践,例如减少严重碰撞的解决问题的方法,并没有得到有效的分享。
汽车正在变得非常复杂和连接的机器,迅速发展成为智能的自动驾驶汽车。它是高级的,基于技术的创新,可大大提高汽车功能,实现自我诊断,改善驾驶员体验并提供电动和近自动驾驶功能。如今,与仅在“引擎盖下”相比,汽车性能在提供舒适,实时的驾驶员互动和增强安全性的特征上排名较多。具有Wi-Fi,蓝牙,语音控制,加热转向轮,按摩座椅,盲点意识,反碰撞(汽车和行人)警告,360度摄像头,自我贴花,自动制动器,甚至半自主驱动器在新自动摩托车排名中迅速变得更加重要的因素。
航空电子设备利用半导体、印刷电路板组件 (pcba) 和锂离子电池等组件,这些组件有助于在小巧精致的封装中提供非凡的创新和功能。预测显示,航空电子设备市场将从 2019 年的 685 亿美元强劲增长至 2024 年的 869 亿美元。增长归因于航空电子设备的先进性推动了新设计、新功能和新连接,从而改善了飞机运行,同时提高了安全性,例如防撞系统和卫星导航。这些好处伴随着巨大的责任,因为航空电子设备在飞机正常运行中起着至关重要的作用。因此,如今的成功飞行在很大程度上取决于航空电子组件的质量,通常是微观层面上不可见元素的质量。在整个航空业中,航空电子设备的影响是巨大而普遍的。
航空电子设备利用半导体、印刷电路板组件 (pcba) 和锂离子电池等组件,这些组件有助于在小巧精致的封装中提供非凡的创新和功能。预测显示,航空电子设备市场将从 2019 年的 685 亿美元强劲增长至 2024 年的 869 亿美元。增长归因于航空电子设备的先进性推动了新设计、新功能和新连接,从而改善了飞机运行,同时提高了安全性,例如防撞系统和卫星导航。这些好处伴随着巨大的责任,因为航空电子设备在飞机正常运行中起着至关重要的作用。因此,如今的成功飞行在很大程度上取决于航空电子组件的质量,通常是微观层面上不可见元素的质量。在整个航空业中,航空电子设备的影响是巨大而普遍的。
(根据蒂伯龙市政法规第 IV 章第 13A 章)报告编号:RI20-000 检查日期:01/00/20 本报告根据对该物业进行物理检查的结果编制而成,以符合镇的建筑法规,并经过真诚努力查找和审查该物业的相关镇记录。物理检查旨在真诚努力识别规范缺陷,但范围必然有限,并且可能存在检查期间未发现的缺陷。本报告并非旨在对结构的健全性、施工质量或是否完全符合现行建筑规范进行全面彻底的检查。本报告应在托管结束前提供给买方。应仔细阅读本报告所附的“潜在购买者通知”,然后签字并返回 Tiburon 建筑部门。
随着极紫外 (EUV) 光刻技术进入大批量生产,半导体行业已将光刻波长匹配的光化图案化掩模检测 (APMI) 工具视为 EUV 掩模基础设施的主要空白。现在,已经开发出一种光化图案化掩模检测系统来填补这一空白。结合开发和商业化 13.5nm 波长光化空白检测 (ABI) 系统的经验以及数十年的深紫外 (DUV) 图案化掩模缺陷检测系统制造经验,我们推出了世界上第一个高灵敏度光化图案化掩模检测和审查系统 ACTIS A150(ACTinic 检测系统)。生产此 APMI 系统需要开发和实施新技术,包括高强度 EUV 源和高数值孔径 EUV 光学器件。APMI 系统具有高分辨率、低噪声成像,对缺陷具有极高的灵敏度。它已证明能够检测出印刷晶圆上估计光刻影响为 10% CD 偏差的掩模缺陷。
太赫兹辐射介于红外和微波之间,最常见的频率范围是 0.1 THz 至 10 THz [1]。由于缺乏有效的、在室温下工作的、紧凑的、成本高效的光源和探测器,太赫兹是整个电磁辐射谱中研究最少的范围之一,直到 20 世纪 80 年代才开始被探索。自过去几十年以来,太赫兹辐射谱引起了研究人员的注意。该辐射范围的具体特征包括非电离、非侵入性、在水中的高吸收率和弥散性(水是生物组织的主要成分)。除了国防应用 [2、3] 和危险物质检测 [4-6] 之外,太赫兹辐射对医学诊断也非常有用 [7]。亚毫米波长最重要的特性是尚未发现其对人体组织有任何负面影响 [8-11]。在医学应用中,这种类型的辐射可用于检测乳腺癌和皮肤癌 [ 12 - 16 ]、研究引入血液循环的标记物,甚至用于分析人眼的角膜 [ 17 , 18 ]。在开发可在大量患者身上测试的设备时,太赫兹辐射的无创性非常重要,它比基于电离辐射的传统方法更具成本效益,诊断也更安全。水分子会强烈衰减太赫兹辐射,因此所研究的生物样本必须很薄或放在由水组成的材料表面。透射配置是可能的,但是它需要准备类似于组织病理学的生物样本,这在活体患者中是不可接受的。因此,反射配置是必要的,我们的研究重点将放在皮肤组织上。这项工作的主要目的是将先进的衍射光学元件 (DOE) 应用于太赫兹发射器和检测器装置。对比健康和癌变皮肤的光学特性可以区分危及生命的病变。由于太赫兹扫描的分辨率有限(波长相对较长),医生的检查无法替代,但这种设备在预防护理中非常有用。我们的目标是设计和制造薄型 DOE,这将使太赫兹皮肤扫描仪更加紧凑和实用。我们提出了一种基于利用的新颖方法,该方法是该领域的新方法
TWI 成立于 1993 年,设计并生产使用红外 (IR) 摄像机、专用软件和硬件测量材料中热流并生成部件地下图像的检测系统。1998 年,TWI 获得了 NAVAIR 第二阶段小型企业创新研究 (SBIR) 合同,以开发用于复合材料的手持式红外无损检测 (NDI) 系统。该项目催生了 ThermoScope®,这是一种便携式系统,旨在将热成像技术从实验室环境转移到检测现场。ThermoScope 弥补了超声波(一种速度太慢而无法有效检测大面积区域的点检测方法)和标准热成像技术(能够检测较大区域但属于定性、需要解释且对某些缺陷类型不敏感)之间的差距。如今,ThermoScope 广泛应用于从复合体育用品到军用头盔、直升机旋翼叶片和航天器等各个行业的 NDI 应用。