摘要:跌倒和随后的并发症是导致发病率和死亡率的主要因素,尤其是在老年人中。为了解决这个问题,我们旨在开发一种轻巧的动态装置,以增加鞋子和步行表面之间的摩擦,这些设备在各个表面,尤其是冰之间有效。受自然界中发现的爪子和鳞片的启发,我们开发了一系列的基里加米结构,这些结构可用于鞋类外极端,以在前脚中产生较高的摩擦力。我们通过数值模拟,体外表面相互作用和体内人力板测量评估了这些元面孔,以鉴定能够调节一系列表面摩擦的最佳基里加米设计。我们预计这些系统的潜在应用可以帮助减轻各种环境中跌倒的风险。
抽象的机器学习最近已成为寻找潜在量子计算优势的富有成果的领域。许多量子增强的机器学习算法批判性地取决于有效产生与存储在量子可访问存储器中的高维数据点的状态的能力。即使是对数据库中存储的许多条目的查询访问,其构造被认为是一次性开销,也有人认为,准备此类振幅编码状态的成本可能会抵消任何指数量子优势。在这里,我们使用平滑的分析证明,如果数据分析算法与小型入口输入扰动相对于较小的入门扰动,则可以通过持续的查询来实现状态准备。通常在现实的机器学习应用程序中满足此标准,其中输入数据对中等噪声进行了主观。我们的结果同样适用于量子启发的算法最近的开创性进度,其中专门构建的数据库足以在低级别病例中用于小聚集素的经典算法。我们发现的结果是,出于实用的机器学习目的,在具有量子算法或量子启发的经典经典算法的一般且灵活的输入模型下,在低级别病例的一般且灵活的输入模型下,可以进行多组载体的处理时间。
摘要 基于经济激励的部署政策是加速清洁能源技术传播的最有效工具之一。上网电价等政策工具在推动太阳能光伏发电的增长方面发挥了关键作用,并可以加速其他对能源系统脱碳至关重要的技术的采用。然而,历史经验表明,如果不能根据技术价格下降调整经济激励措施,可能会从根本上破坏这些政策的有效性和成本效益。本文通过评估三种新颖的政策设计来应对这一挑战。基于控制理论原理,所提出的机制根据部署、政策成本或采用者的盈利能力的变化来调整激励措施。我们评估了每种政策设计在 2000 年至 2016 年期间应用于德国太阳能光伏上网电价时将取得的结果。为此,我们开发了一个基于代理的模型,使我们能够模拟个人家庭和中型和大型企业的采用决策,以及技术价格的演变。我们的结果表明,受控制理论启发的响应设计可能会产生更紧密地遵循其目标且成本更低的政策。此外,我们的分析表明,所研究的设计可以大大减少政策结果和意外利润的不确定性。这项研究还强调了政策目标的时间分布,并确定政策设计的权衡,为未来部署政策的设计得出相关启示。
世界正在迎来知识密集型和高度数字化的经济。这个世界也许看起来不像是在打仗,但实际上我们正在进入第四次工业革命——一个超速发展和重大技术变革的时代。
微结构或纳米结构会引起衍射、干涉和散射。[3] 以这种方式产生的结构色通常与角度有关(彩虹色),与光吸收产生的颜色相比,结构色更鲜艳、可调且稳定。[4] 到目前为止,已有多种光子结构被用于产生结构色并取代传统的色素沉着。这些包括可调高折射率光子玻璃、微米级球形胶体组件和衍射光栅结构。[5,6] 虽然仿生光子结构已被用于创造高度饱和的结构色,但它们制造困难且成本高,不适合大规模生产。此外,整个可见光谱范围内对新的仿生结构色的需求尚未得到满足。因此,更好地理解结构着色的潜在机制无疑将改善颜色特性和寿命。虽然自然界中存在大量结构色的例子,但由于蝴蝶翅膀的光子纳米结构颜色鲜艳,因此人们对其的研究兴趣颇多。[7,8] 例如,Vigneron 等人发现,Pierella luna(月神蝴蝶)翅膀鳞片产生的彩虹色效应是由整个鳞片的宏观变形引起的,当翅膀被白光照射时,就像衍射光栅一样分解
用户控制图片(亮度、对比度、清晰度、背景级别、色调、颜色、降噪、伽玛选择、低蓝光、色温、颜色控制、过扫描、图片重置)、屏幕(缩放模式、自定义缩放、屏幕重置)、音频(平衡、高音、低音、音量、音频输出(线路输出)、最大。音量,最小。音量、静音、音频重置、音频输出同步、扬声器设置)、配置 1(Android 启动器、开启状态、触摸锁、触摸模式、鼠标模式、面板保存、RS232 路由、启动源、WOL、conf.1 重置、恢复出厂设置)、配置 2(OSD 超时、OSD H 位置、OSD V 位置、系统旋转、信息 OSD、徽标和动画、徽标设置、动画设置、显示器 ID、显示器信息、HDMI 版本、conf.2 重置)、高级选项(信息亭模式、侧边栏、无信号图像、电动支架、红外控制、电源 LED 灯、风扇、关闭定时器、时间表、单线 HDMI、单线 HDMI 关闭、故障转移、语言、OSD 透明度、省电、高级选项重置)
用户控制图片(亮度,对比度,清晰度,背部,色彩,颜色,降噪,选择,低蓝光,低光,颜色温度,颜色控制,颜色控制,超级,图片重置),屏幕(缩放模式,自定义缩放,屏幕重置),音频(balance,balance,balance,traleble,treble,bass,bass,bass,audio nof(line out out(line),最高),最大volume, mute, audio reset, audio out sync, speaker setting), configuration 1 (Android launcher, switch on state, Touch lock, Touch mode, mouse mode, panel saving, RS232 routing, boot on source, WOL, conf.1 reset, factory reset), configuration 2 (OSD timeout, OSD H position, OSD V position, system rotation, info OSD, logo and animation, logo setting, animation设置,监视ID,监视信息,HDMI版本,conf2重置),高级选项(售货亭模式,侧栏,无信号图像,电动支架,电动控制,电源LED照明,风扇,关闭计时器,时间表,带有一根电线的HDMI,带有一线电线的HDMI,一根电线,故障转移,语言,OSD透明度,电源节省,电源节省,高级选项,高级选项重置)
持续学习(CL)构成了深层神经网络(DNN)的重大挑战,这是由于灾难性的忘记在引入新的任务时对先前获得的任务的灾难性忘记。人类在学习和适应新任务的情况下擅长而无需忘记,这是通过大脑中的融合学习系统归因于抽象体验的彩排的能力。这项研究旨在复制和验证Birt的发现,Birt的发现是一种新型方法,利用视觉变压器来增强表示练习的代表性,以进行持续学习。birt在视觉变压器的各个阶段引入了建设性噪声,并与工作模型的指数移动平均值(以减轻过度拟合并增强鲁棒性)相加。通过复制Birt的方法,我们试图验证其声称的改善,比传统的原始图像排练和香草代表对几个具有挑战性的CLENCHM分析进行排练。此外,这项研究还研究了Birt对自然和对抗性腐败的记忆效率和稳健性,旨在增强其实际适用性。复制将提供对原始论文中介绍的思想的可这种可总合性和普遍性的关键见解。
本期特刊旨在探索和展示神经形态和生物启发的计算的尖端研究和发展。此问题将集中在这些迅速发展的领域的最新进步,挑战和未来方向上。我们欢迎原始的研究文章,全面评论和简短的沟通来解决神经形态和生物启发的计算的各个方面,包括但不限于: - 神经形态硬件设计和实现 - 跨越神经网络及其应用 - 生物启动的算法和优化技术,并分化了机器计算机和机器的计算机<
ML集体的研究人员在旧金山和哥伦比亚大学进行了一项研究,旨在通过使用特定类型的脑启发的人工神经网络来理解关系学习的生物学基础。他们的作品发表在自然神经科学上,对大脑过程中的过程阐明了可能是人类和其他生物的关系学习的过程。