工业中的过程控制(Huang et al., 2023; Liu et al., 2023; Zhang R. et al., 2023)。受益于信号处理和深度学习(DL)的进步,BCI 的一个突出子集是脑电图 (EEG)(Gao and Mao, 2021; Zhao et al., 2022; Li H. et al., 2023)。EEG 技术主要用于识别和分类运动想象 (MI) 信号,这对中风患者等行动障碍者来说是一种重要的辅助手段。EEG 的高精度、实时响应和成本效益使其有别于其他神经成像技术,如脑磁图和功能性磁共振成像(Huang et al., 2021; Mirchi et al., 2022; Tong et al., 2023)。传统的 MI-EEG 分类算法采用空间解码技术,利用从头皮记录的多通道 EEG 数据来识别运动意图 (Xu et al., 2021)。为了对来自多通道 MI-EEG 的信号进行分类,已经提出了各种方法,有效地捕捉它们的时间、频谱和空间特征 (Tang et al., 2019; Wang and Cerf, 2022; Hamada et al., 2023; Li Y. et al., 2023)。鉴于 EEG 信号的节律性和非线性特性,已经提出了几种利用小波调制和模糊熵的特征提取技术。 Grosse(Grosse-Wentrup and Buss,2008)介绍了一种结合公共空间模式 (CSP) 进行空间滤波和降低维数的方法,并辅以滤波器组技术将空间细化信号划分为多个频率子带。同样,Malan 和 Sharma(2022)开发了一个基于双树复小波变换的滤波器组,将 EEG 信号分离为子带。将 EEG 信号分割成这些子带后,通过 CSP 从每个子带得出空间特征,随后采用监督学习框架进行细化。Fei 和 Chu(2022)提出了一种利用相空间和小波变换的多层孪生支持向量机。尽管这些方法具有潜力,但它们忽略了电极之间的拓扑关系,因此需要进一步优化以提高 MI 分类准确性。认识到神经科学对脑网络动力学和神经信号传播机制的日益重视,图卷积网络 (GCN) 已被引入用于解码 EEG 信号(Wang 等人,2021;Du G. 等人,2022;Gao 等人,2022)。然后 Kipf 和 Welling(2016)将图论和深度学习结合起来以捕捉节点之间的关系。巧合的是,Hinton(2022)提出的神经传递领域的一个突破性概念前向-前向 (FF) 机制正在引起人们的关注。该机制提供了一种有效的方法来处理神经网络中的序列数据,而无需存储神经活动或暂停以进行错误传播。我们的研究旨在将 FF 机制与 GCN 相结合,用于基于 EEG 的 BCI,从而在运动意象分类方面取得重大进展。在研究中,我们提出了一种创新的 F-FGCN 框架用于 MI 分类。我们研究的突出贡献如下:
迈克尔·加伦是谁?迈克尔·加伦于 1961 年出生于多伦多东区综合医院,父母是迈伦和伯纳·加伦。虽然加伦一家后来搬离了东约克,但他们儿子出生的医院却一直留在他们心中。迈克尔小时候被诊断出患有一种罕见的组织癌。这种疾病导致他在 13 岁时不幸去世。去世前,迈克尔向母亲伯纳吐露,他最害怕英年早逝,就是人们不会记得他。正是出于这个原因,加上迈伦和伯纳·加伦的慷慨捐赠,我们在 2015 年以迈克尔的名字重新命名了我们的医院。现在,我们可以自豪地说,迈克尔永远不会被遗忘。欢迎来到迈克尔·加伦医院。
由于许多优势,近年来自动调制分类(AMC)的受欢迎程度很高。在交流方面,AMC的可靠性非常关键。增加信号的数量成倍增加了使用AMC的成本。精确的分类方法,例如神经网络,其中神经网络的参数或输入变量的尺寸或输出变量的尺寸是动态修改的,在获得高精度结果方面尚未成功。为了提高调制分类的准确性,本研究采用基于量子(灵感)遗传算法(Qiga)的“ Qiga”特征选择模型。qiga用于选择正确的功能,并限制必须学习的示例数量,以便缩短整体系统时间并降低计算成本。选择出色的特性通过量子计算增强,这是为了降低解决方案的复杂性。内部验证结果表明,Qiga模型显着提高了统计匹配质量,并显着优于其他模型。关键字
允许免费复制本作品的全部或部分以供个人或课堂使用,但不得出于营利或商业目的而复制或分发,且副本首页必须注明此声明和完整引文。必须尊重 ACM 以外的人拥有的本作品组成部分的版权。允许摘要并注明出处。若要复制、重新发布、发布到服务器或重新分发到列表,则需要事先获得特定许可和/或支付费用。请向 permissions@acm.org 申请许可。
企业尚未充分了解人工智能 (AI) 的采用及其好处,导致企业采用成功率较低。众所周知的技术接受和使用统一理论 (UTAUT) 及其扩展并未考虑 AI 和特定企业规模的特殊性。在此背景下,本研究的主要目标是提出一个受 UTAUT 启发的新模型,以考虑基于 AI 的 IS 和不同企业规模的特殊性。使用 363 名参与者的样本测试了所提出的人工智能采用意向模型 (AI2M),证实了 UTAUT 影响因素的重要性:感知绩效、社会影响和预期努力。此外,与 UTAUT 的背景不同,发现促进条件会影响行为意向。此外,中介测试表明,自我效能和社会影响会调节其他三个因素对采用意向的影响。最后,发现公司规模对自我效能和社会影响对采用意向的影响之间存在调节关系。 AI2M 解释了采用意向的 48% 方差,对不同规模的企业具有普遍性。因此,本研究有助于缩小技术采用相关研究与不同规模企业采用基于 AI 的技术之间的差距,为未来学者的研究和管理者决策提供支持。
。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2025 年 2 月 5 日发布了此版本。;https://doi.org/10.1101/2025.02.05.636605 doi:bioRxiv 预印本
Pushparaj,K.,Ky,G.,Ayeni,A。J.,Alam,S。&Duong,V。N.(2021)。源自功能性磁共振成像的空中交通控制器中人类自动化信任的量子启发模型,与行为指标相关。航空运输管理杂志,97,102143-。https://dx.doi.org/10.1016/j.jairtraman.2021.102143
投资者应注意,本报告中的财务数据包括澳大利亚证券投资委员会发布的《澳大利亚证券投资委员会监管指南 230 披露非 IFRS 财务信息》项下的“非 IFRS 财务信息”以及美国 1934 年证券交易法 G 条例所定义的“非 GAAP 财务指标”。本报告中的非 IFRS/非 GAAP 指标包括负债率、维持资本、主要项目资本、主要矿山开发、生产成本信息(如总维持成本和总成本)。Evolution 认为,这些非 IFRS/非 GAAP 财务信息可为用户提供有用的信息,帮助他们衡量 Evolution 的财务业绩和状况。非 IFRS 财务信息不具有澳大利亚会计准则 (AAS) 规定的标准化含义,因此可能无法与其他实体提供的类似指标进行比较,也不应被视为根据 AAS 确定的其他财务指标的替代方案。因此,投资者应谨慎行事,不要过分依赖本演示文稿中包含的任何非 IFRS/非 GAAP 财务信息和比率。本演示文稿中的非 IFRS 财务信息未经公司外部审计师审计或审查。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年2月5日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.02.05.636605 doi:Biorxiv Preprint