媒介传播的感染因其广泛影响以及预防,控制和治疗工作所需的大量资源,对全球卫生系统和经济体造成了重大负担。在这项工作中,我们为矢量传播感染的传输动力学制定了数学模型,并通过Atangana-Baleanu衍生物的疫苗接种作用。该模型的解决方案是正面的,并且对于状态变量的正初始值而言。我们介绍了分析模型分析的基本概念和理论。使用下一代矩阵方法,我们确定由R 0表示的阈值参数。分析了系统在无病平衡处的局部渐近稳定性。为了确定所提出模型的解决方案的存在,我们采用了定点理论。开发了一种数值方案,以在不同的输入参数下可视化系统的动态行为。数值模拟是为了说明这些参数如何影响系统的动力学。结果突出了影响媒介传播疾病的传播和控制的关键因素,从而提供了对预防和缓解策略的见解。
摘要 - 为了确保经济生存能力和微电网操作的可靠性,必须设计适应能的能源管理系统(EMS)。大多数研究都讨论了基于优化的方法,例如使用混合构成线性编程(MILP)问题,以获取每个微电网设备的最佳操作概况,从而可以实现经济,技术或环境目标。但是,这种EMS需要发电和需求的预测能力以及对不确定性的管理。在某些微电网中,尤其是在工业区域中,无法准确预测发电和负载需求。在这种情况下,只能考虑用于实时能源管理的基于规则的算法。在本文中,提出了一种基于规则的算法,用于使用电力和氢作为能量载体的海港多能微电网进行管理。规则是基于用MILP问题解决的结果设计的,目的是通过考虑动态定价来最大化收入并使用本地能源产生的能量。此外,设计的特定策略是为电解室和氢气罐的管理而设计的,以避免过早衰老。结果表明,拟议的实时算法和规则使经济和充满活力的标准能够达到接近通过MILP问题解决的价值,增长回报期的增加小于2%。
摘要:如今,工业生产现场面临两大问题:需要减少生产过程对环境的影响,以及能源价格上涨造成的经济困难。这两个挑战可以通过使用现场可再生能源发电为工业过程提供动力来部分解决。然而,电价的波动性和当地可再生能源的间歇性导致需要解决综合工业生产和能源供应规划问题。这项工作研究了由电网电力和现场可再生能源驱动的工业过程的单机多产品批量问题。我们提出了一种新的比例批量和调度问题扩展,它依赖于两级结构进行时间离散化。第一级与产品需求满足有关,第二级用于生产和能源供应规划。将提出的扩展与之前发布的处理类似问题的一般批量和调度问题扩展进行了比较。我们的初步数值结果表明,在大多数情况下,我们的模型提供了相同成本的生产计划,但计算工作量显著减少。
摘要 考虑到数据中心在世界各地的分布及其巨大的能源消耗,一些研究人员专注于任务调度和资源分配问题,以尽量减少数据中心的能源消耗。其他举措则侧重于实施绿色能源,以尽量减少化石燃料的消耗和二氧化碳排放。作为 ANR DATAZERO 项目 [ 34 ] 的一部分,一些研究团队旨在定义完全绿色数据中心的主要概念,该数据中心仅由可再生能源供电。为了实现这一目标,必须注重高效管理由太阳能电池板、风力涡轮机、电池和燃料电池系统组成的自主混合动力系统。这项工作的目的不是证明独立的数据中心在经济上可行,而是证明其可行性。本文提出了一组基于混合整数线性规划的模型,该模型能够管理能源承诺,以满足数据中心的电力需求。该方法在优化时会考虑季节和天气预报。
©作者2025。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by-nc-nd/4。0/。
AC Josephson效应吸引了很多关注,作为研究基本物理现象的强大探测。1–7常规的基于氧化物的约瑟夫森连接(JJS)具有正弦电流相关联(CPR)。结果,微波辐照下的这些连接的AC响应表现为vn¼n(U 0 f mw)处的相锁电压平台,其中n是整数,u 0是the the the the the the the the the the the the fl ux量子。然而,许多理论研究预测超导体 - 疾病 - 导向器 - 超导体(S-SM – S)系统中的非鼻腔CPR,在这些系统中,高度透明模式通过Andreev结合状态携带电流。8–11这种现象的实验表现示例包括拓扑系统中缺少奇数步骤1,2,4,6和高度偏斜的琐碎琐碎系统中的分数shapiro步骤。1,12–14因此,研究AC Josephson效应可以提供对S -SM – S系统物理学的关键见解。由于其狄拉克带结构和出色的载体传输性能,石墨烯是实现S -SM – S Josephson插条设备的吸引人选择。的确,许多研究有助于推进石墨烯JJ设备。3,5,15–20在其中的观测值是AC JOSEPHSON在石墨烯JJ中的效应。它们包括零跨步骤,19个双稳定性,20和分数电压在多末端系统中。3,5但是,尚未在平面石墨烯JJS中系统地研究了分数shapiro的步骤及其门电压依赖性,我们在这里的研究中报告了这一点。
0 E2πI / 2 K]及其受控版本。请注意,S = R 2和T = R 3。经常指出,这些量子门以高精度的可用性(在r k中任意小角度,k→∞)都是一个挑战,在理论上,就物理理论的极限而言,在工程理论的极限上,实际上在工程基础上[3-6] 1)2)。在很大程度上,这种关注促使另一个巨大的智力成就,即纠正量子误差代码的发展[7-11]。从Shor的工作开始[12],有大量的耐受量子计算的工作。强阈值定理被证明,这表明在某些误差模型中,如果错误率低于一定阈值,则量子计算至少在理论上可以任意高精度[10,13 - 18]。这些是美丽的数学定理。,但从根本上讲,他们假设u(2)(或su(2)如果我们考虑不相关的相位因子)完全对应于现实中的量子的操作,尤其是在其组成中,该组组成(组成,在其限制的精确性上都定义在C上,则与可实现的可实质物理量子量化的顺序应用相对应。关于这种任意精度是否可以实现的意见。当然是可能的。然而,基于这样的信念,即量子力学本身(就像任何其他物理理论一样)不是,也不是要在描述现实时绝对准确(某些投机性评论在第5节中)。我们假设同时,在过去的几十年中,巨大的效果一直在进行,最近有了更新的动力和热情,并且目的是实现量子电路的更准确的硬件实现。在本文中,我们认为在每个量子控制旋转门的情况下,Shor的量子分解算法都会在角度遇到一个小的随机噪声。
执行算术运算的量子电路在量子计算中至关重要,因为经过验证的量子算法需要此类运算。尽管量子计算机资源越来越丰富,但目前可用的量子比特数量仍然有限。此外,这些量子比特受到内部和外部噪声的严重影响。已经证明,使用 Clifford+T 门构建的量子电路可以实现容错。然而,使用 T 门的成本非常高。如果电路中使用的 T 门数量没有优化,电路的成本将过度增加。因此,优化电路以使其尽可能节省资源并具有抗噪声能力至关重要。本文介绍了一种执行两个整数乘法的电路设计。该电路仅使用 Clifford+T 门构建,以兼容错误检测和校正码。在 T 计数和 T 深度方面,它的表现优于最先进的电路。