摘要 Covid-19 的爆发导致制造业运营中断。最严重的负面影响之一是关键医疗用品的短缺。制造公司面临来自政府的压力,要求其利用制造能力重新利用生产来满足对必需产品的关键需求。为此,技术和人工智能 (AI) 的最新进步可以作为应对解决方案,以克服与重新利用制造 (RM) 相关的威胁。该研究的目的是通过系统的文献综述 (SLR) 来调查人工智能在 RM 中的重要性。本研究收集了 SCOPUS 数据库中选定研究领域的约 453 篇文章。结构主题模型 (STM) 用于从选定的 RM 中 AI 文档中生成新兴的研究主题。此外,为了研究 RM 中 AI 领域的研究趋势,使用 R 包进行了文献计量分析。研究结果表明,由于该领域每年全球文章的产量有限,因此该领域的研究空间巨大。然而,这是一个不断发展的领域,已经确定了许多研究合作。该研究提出了一个全面的研究框架和未来研究发展的建议。
心脏死亡(SCD)仍然是一个紧迫的健康问题,每年全球数十万。遭受SCD的人之间的杂项,从严重的心脏失败到看似健康的人,对有效的风险评估构成了重大挑战。主要依赖左心室的常规风险层次,仅导致植入可植入的心脏逆变剂的适度效率用于预防SCD。回应,艺术智能(AI)对个性化的SCD风险预测和调整预防策略有望为个别患者的独特性专案。机器和深度学习算法具有学习复杂数据和定义的终点之间的复杂非线性模式的能力,并利用这些模式来识别SCD的微妙指标和预测指标,而SCD的预测因素可能不会通过传统的统计分析而明显。但是,尽管AI有可能改善SCD风险层次,但仍需要解决重要的局限性。我们旨在概述SCD的AI预测模型的当前最新图案,重点介绍这些模型在临床实践中的机会,并确定阻碍广泛采用的关键挑战。
自身免疫性风湿病(ARD)提出了一个重要的全球健康挑战,其特征是患病率上升。这些高度异质性疾病涉及复杂的病理生理机制,从而导致跨个体的可变治疗效率。这种可变性强调了对个性化和精确治疗策略的需求。传统上,临床实践取决于经验治疗的选择,这通常会导致有效的疾病管理延迟,并可能对多个器官造成不可逆转的损害。这样的延误显着影响患者的生活质量和预后。人工智能(AI)最近成为风湿病学的一种变革性工具,提供了新的见解和方法。当前的研究探讨了AI在诊断疾病,分层风险,评估预后和预测ARD治疗反应方面的能力。AI中的这些发展为更精确和有针对性的治疗策略提供了潜力,从而促进了增强患者预后的乐观情绪。本文批判性地回顾了预测ARD治疗反应的最新AI进步,强调了当前的艺术状况,确定了持续的挑战,并提出了未来研究的方向。通过利用AI的能力,研究人员和临床医生准备开发更个性化和有效的干预措施,改善ARD患者的护理和结果。
多发性骨髓瘤是全球第二常见的血液系统恶性肿瘤,发病率高和死亡率。尽管它被认为是一种无法治愈的疾病,但对这种肿瘤的了解增强导致了新的治疗方法,从而改善了患者的预期寿命。在临床试验,前瞻性注册和现实世界中的不同研究中,已经通过不同的研究生成了大量数据,这些研究已纳入了实验室测试,流量细胞术,分子标记,细胞遗传学,诊断图像和治疗,并将其用于常规临床实践。在这篇综述中,我们描述了如何使用不同的人工智能模型来处理和分析这些数据,旨在提高准确性并转化为临床上的好处,允许对早期诊断和响应评估进行实质性改进,加快分析加快分析,速度加快分析,减少对操作员偏见的劳动力密集型过程,并提供更高的参数信息,并提供更多的参数信息。此外,我们确定了人工智能如何允许开发综合模型,以预测对治疗的反应以及实现无法检测到的不可检测的可衡量可测量的残留疾病,无进展生存期和整体存活的可能性,从而导致更好的临床决策,从而有可能提高患者的个性化治疗,可以改善患者的能态。总体而言,人工智能有可能彻底改变多个骨髓瘤护理,这对于在前瞻性临床队列中进行验证是必要的,并开发模型以纳入常规的日常临床实践。
小儿和新生儿种群中的急性肾脏损伤(AKI)提出了显着的诊断和管理挑战,延迟检测导致长期并发症,例如高血压和慢性肾脏疾病。人工智能(AI)的最新进步为早期发现,风险地层和个性化护理提供了新的途径。本文探讨了AI模型的应用,包括受监督和无监督的机器学习,在预测AKI,改善临床决策以及识别对干预措施的反应不同的亚表型。它讨论了AI与现有风险评分和生物标志物的整合,以提高预测准确性及其革命性小儿肾脏病的潜力。但是,诸如数据质量,算法偏见以及对透明和道德实施的需求等障碍是关键的考虑。未来的指示强调纳入生物标志物,扩大外部验证,并确保公平的访问以优化小儿AKI护理的结果。
因此,下一个提到的结果遵循。基于通过实验测量左手和右手拇指运动过程中大脑电活动获得的EEG信号,我们获得了用于训练集合随机森林算法的输入和输出数据,该算法是通过Scikit-Learn库的软件工具实现的。使用Joblib库的软件工具,可以通过将N_JOBS HyperParameter的值设置为-1时在物理内核和计算机流程上训练集合的随机森林算法时并行化计算。基于DASK库的软件工具,将并行计算分布在群集计算机系统的物理核心及其流中,这使得组织高性能计算以训练集合随机森林算法。结果,根据质量指标:准确性,ROC_AUC和F1评估了创建算法,软件 - 硬件计算管道的质量。所有这些一起制作
Thomas Hartung 1,2 * , Lena Smirnova 1 , Itzy E. Morales Pantoja 1 , Akwasi Akwaboah 3 , Dowlette-Mary Alam El Din 1 , Cynthia A. Berlinicke 4 , J. Lomax Boyd 5 , Brian S. Caffo 6 , Ben Capello 7 , Cohen Lowry , Lowry 8 . Curley 7 , Ralph Etienne-Cummings 3 , Raha Dastgheyb 10 , David H. Gracias 11,12,13,14,15,16 , Frederic Gilbert 17 , Christa Whelan Habela 10 , Fang Han 18 , Timothy D. 19 , Harris Hill 2 , Eric Hermann , 21 . Qi Huang 11 , Rabih E. Jabbour 22 , Erik C. Johnson 20 , Brett J. Kagan 23 , Caroline Krall 1 , Andre Levchenko 24 , Paul Locke 1 , Alexandra Maertens 1 , Monica Metea 25 , Alysson R. Muotri 227 , Paul Rhealton 28 mus 20 , Jesse D. Plotkin 1 , Paul Roach 29 , July Carolina Romero 1 , Jens C. Schwamborn 30 , Fenna Sille ´ 1 , Alexander S. Szalay 31,32,33 , Katya Tsaioun 1 , Daniel Tornero 35 , Jolstein , Jolstein , 36 . 37
农用无人机集机器人、人工智能、大数据、物联网等技术于一体,被广泛应用于播种、地块监测、作物病虫害检测、农药化肥喷洒等各类农业作业,大大提高农业生产效率、解放劳动力(Kim et al.,2019),正在成为精准农业航空领域的一股生力军(Wang et al.,2019)。与传统农业机械相比,农用无人机具有体积小、重量轻、便于运输,飞行控制灵活等特点,具有作业精准、高效、环保、智能、使用方便等特点。但很多时候,飞行过程中农用无人机载荷的实时变化会影响其速度、精度和飞行轨迹稳定性。徐建军等(2019)指出,农用无人机在作业过程中应时刻保持良好的飞行姿态,提高作业效率。魏等提出了一种使用 PID 控制器和鲁棒 TS 模糊控制方法实现 AUAV 飞行轨迹稳定性的飞行动力学模型。对于不同的飞行条件,该模型可以在飞行路径中实现一定的稳定性,以抵抗负载扰动。