[摘要]天然药物(NMS)对于治疗人类疾病至关重要。在体内有效地表征其生物活性成分一直是NM研究中的重点和挑战。高性能液相色谱高分辨率质谱(HPLC-HRMS)系统具有高灵敏度,分辨率和精度,用于进行NMS的体内分析。但是,由于NMS的复杂性,常规数据获取,采矿和处理技术通常无法满足体内NM分析的实际需求。在过去的二十年中,已经开发了基于各种原理和al-gorithms的智能光谱数据处理技术,并应用于体内分析。因此,通过依靠这些技术而无需更改仪器硬件,通过依靠这些技术来取得改进。这些改进包括增强的仪器分析灵敏度,扩展的复合分析覆盖率,智能识别和对体内化合物的非目标的表征,为研究NMS的体内代谢以及筛选药理学活性成分提供了有力的技术手段。本综述总结了过去二十年中报道的Intelem MS数据处理技术的NMS体内分析策略的研究进度。它讨论了复合结构的差异,生物样品之间的变化以及人工智能(AI)神经网络算法的应用。此外,该评论还提供了对NMS体内跟踪潜力的见解,包括筛选生物活性成分和鉴定Phar-Macokinetic Markers。目的是为NMS的体内分析提供新技术的整合和开发。
自适应巡航控制 (ACC) 遵循自动驾驶汽车的工业和安全标准,是现代车辆中广泛使用的高级驾驶辅助系统 (ADAS) 功能。ACC 目前可根据驾驶员的期望速度值来控制速度。本研究介绍了一项重大进步:智能自适应巡航控制 (IACC) 功能,同时开发了一种控制系统架构,通过将其集成到自动驾驶汽车中,该架构有望在科学、经济和社会层面做出显著贡献。该设计融合了交通标志和限速识别 (TSLR)、ADAS 功能和全球定位系统 (GPS) 数据等关键元素,主要通过这些支持功能增强驾驶员安全性。主要重点是设计一个可容纳这些新功能以确保安全驾驶的系统架构。IACC 系统架构的创建采用基于模型的系统工程 (MBSE) 的方法。通过这种 MBSE 方法,我们制作了系统级图表,并系统地解决了安全问题。我们设计了几种方案来评估贡献,随后进行了测试和分析。该架构特别强调 IACC 的安全方面。利用 TSLR 功能,系统可以解读交通标志并从外部来源获取限速数据,防止车辆速度超过规定限速。将设定速度值与限速进行比较,确保遵守安全参数。在这种情况下,系统利用 GPS 数据识别前方车辆,增强了在蜿蜒道路上的驾驶员支持。与其他自适应巡航控制概念相比,这种方法显著提高了 IACC 功能的可靠性,尤其是在安全灵敏度方面。
重要的是,Synergy的劳动力代表其服务的社区。多样性,公平和包容是我热衷的领域。我们在这个领域取得了进步,但是我们还有很长的路要走。我们今年的一些成就包括启动我们的第四个残疾访问和包容计划以及我们的创新和解行动计划。在开发和构建新的可再生能源项目时,Synergy将继续研究我们如何更好地识别,管理和保护原住民文化遗产。Synergy认可价值观,并感谢长者通过知识共享带给我们项目的东西。我们仍然专注于性别平等,并认识到我们在传统上以男性主导的能源部门面临的挑战。我们致力于在所有领导层面上进行性别平等,并为妇女提供高质量的领导力计划,以支持这一目标。
1,2,教育科学和培训工程学多学科实验室(LMSEIF)。运动科学评估和体育锻炼教学。摩洛哥哈桑二世卡萨布兰卡大学的普通高中(ENS-C)。在线发布:2024年8月31日被接受出版:2024年8月15日doi:10.7752/jpes.2024.08214摘要:这项研究探讨了报道的数据和预测分析作为运动员培训计划的长期生成方法的使用。从607名高等教育学生那里收集的数据(平均年龄= 16.86; STD = 1.22),包括从物理测试和活动记录中进行的测量。数据集包含29个变量,这些变量是对培训程序的预测准确性的。我们利用Microsoft Azure机器学习来确定特征对结果的重要性,并利用Power BI可视化聚合特征对跑步距离的影响。初步发现表明,专注于训练工作的最佳年龄范围在16至17岁之间。该结果由Spearman相关系数为0.42支持,根据关键骨料特征规定了年龄组和预测的性能结果之间的中等正相关关系。特别是四个关键特征会显着影响性能,而其他变量的影响很小。该研究强调了这些总特征在预测训练成功方面的重要性。总而言之,该研究强调了强大的报告过程的重要性以及在制定培训计划中使用预测分析的重要性。它标识了四个关键特征,这些功能对实现的性能产生了重大影响。虽然这四个功能至关重要,但研究还承认,尽管有影响力较小,但其他变量仍然可能影响结果。这种全面的数据收集和分析方法为优化运动员培训计划提供了坚实的基础,以确保培训工作既有目标又有效。这些发现为旨在通过数据驱动的培训策略提高运动表现的教练和体育科学家提供了宝贵的见解。关键字:绩效优化,运动分析,数据驱动培训。简介
任何修复的目的都是恢复结构的原有强度和刚度,并满足规定的质量平衡和空气动力学要求。一般来说,复合材料的修复要么用螺钉固定,要么用胶水固定。对于薄层压板或夹层复合材料,不允许使用螺栓修复,因此要进行粘合修复,最好采用齐平模板修复的形式。轨道车辆承受着很高的运行和交通负荷,损坏需要修复过程,而修复过程可能会因临时和计划外的停机而产生经济后果。因此,目标是使修复过程更简单、更快捷、更安全。修复复合材料时,湿法层压和真空工艺是耗时且多阶段的工艺。为了提高修复过程的可靠性,必须
本文介绍了一种基于闵可夫斯基数学相似性的新型聚类方法,以改进用于分类的EEG特征选择,并在机器学习的背景下实现高效的粒子群优化(PSO)。鉴于高维医学数据集的复杂性,特征选择在预防疾病和促进公共健康方面起着至关重要的作用。通过采用闵可夫斯基聚类,目标是将数据集记录分组为两个具有高特征一致性的聚类,从而通过应用 PSO 等优化技术来选择最优特征,从而提高准确性。此外,所提出的模型可以扩展到智能数据集,包括EEG和其他数据集。由于精确分类所需的特征较少,因此智能特征选择是机器学习的一个高级步骤。本文研究了影响波恩大学EEG数据集中特征选择的关键因素。将所提出的系统与各种优化和特征选择方法进行了比较,结果表明,在基于准确度测量分析和分类EEG信号方面具有卓越的性能。实验结果证实了所提出的模型作为脑电图数据分类的有用工具的有效性,准确率高达 100%。这项研究的成果有可能通过简化识别和诊断脑部疾病的过程,使相关专业的医学专家受益。从技术上讲,机器学习算法 RF、KNN、SVM、NB 和 DT 用于对选定的特征进行分类。
机器学习动力智能聊天机器人的实施极大地增强了客户服务和在各个行业的用户体验。随着人工智能和自然语言处理的进步,聊天机器人已成为企业与客户有效沟通的重要工具。机器学习算法使聊天机器人能够分析客户查询并提供准确的响应,从而模仿人类的对话。这导致了客户满意度的提高,因为聊天机器人可以处理大量查询并有效地解决它们。此外,聊天机器人24/7可用,为客户提供圆形通讯服务。在企业中实施聊天机器人也可以节省成本,因为它们减少了对人类客户服务代表的需求。这使公司能够将其资源分配给其业务的其他领域,最终导致生产率提高。除了改善客户服务外,智能聊天机器人还可以增强用户体验。通过不断从用户互动中学习,聊天机器人可以个性化响应并提供相关信息,从而使客户体验更加无缝和高效。此外,可以将聊天机器人集成到各种平台中,例如网站,社交媒体和消息传递应用程序,使用户很容易访问它们。这也导致用户参与度和保留率提高。还讨论了该技术的潜在挑战和局限性,并为该领域的未来研究提供了建议。总体而言,机器学习动力智能聊天机器人的开发和实施极大地增强了客户服务和用户体验,使其成为当今数字时代企业的宝贵工具。
面对日益复杂的网络威胁,传统的检测系统往往无法保护关键的供应链。本研究介绍了一种集成量子计算 (QC) 和人工智能 (AI) 的智能网络威胁检测系统的开发和评估。与传统方法相比,该系统显著提高了检测准确性、减少了延迟并提高了资源效率。量子算法,如量子支持向量机 (QSVM) 和量子神经网络 (QNN),分别表现出 95.2% 和 96.7% 的准确率,表现出色。该系统对各种网络威胁(包括恶意软件、网络钓鱼、勒索软件和高级持续性威胁 (APT))的检测率很高,误报率也降低了。QC 的集成还加快了威胁检测和响应时间,关键组件的系统延迟减少了一半。这些进步为供应链中的网络威胁响应提供了巨大的好处,确保对金融交易和关键基础设施进行强有力的保护。增强的可扩展性和效率使该系统成为保护美国金融部门免受复杂网络攻击的宝贵资产。
Lexis+ AI 提供安全的生成式 AI 工具,为律师提高效率、效力和可靠的结果 加拿大多伦多 – 2024 年 1 月 11 日 – 全球领先的信息和分析提供商 LexisNexis ® Legal & Professional 今天宣布推出 Lexis+ AI™ 的加拿大和英国商业预览版,这是一款旨在改变法律工作的生成式 AI 解决方案。Lexis+ AI 以我们大量准确且独家的加拿大法律内容和用例库为基础,将生成式 AI 的强大功能与专有的 LexisNexis 搜索技术相结合,可无缝浏览英语和法语法律内容。结果始终有可验证、可引用的权威支持。继 2023 年成功进行商业预览后,Lexis+ AI 现已在美国全面上市。Lexis+ AI 技术具有对话式搜索、深刻总结、智能法律起草和文档上传功能,所有这些都由最先进的加密和隐私技术提供支持,以确保敏感数据的安全。对话式搜索简化了复杂且耗时的法律研究流程,为各种法律查询提供了用户友好的搜索体验,并附带引文。这使律师能够有效、高效地开展研究。增强型摘要功能提供法律文件的自定义摘要,加快和指导深入分析。生成式文档起草功能可指导客户完成整个法律起草过程,并根据用户提示自动生成初稿。这一创新功能允许用户轻松修改语言和语气以满足他们的需求。此外,文档上传功能允许快速分析、摘要和提取法律文件中的关键见解。LexisNexis Legal & Professional Canada 首席执行官 Eric Wright 表示:“我们很高兴将这项变革性技术带给客户。Lexis+ AI 解决方案为加拿大律师提供了首创的工具,他们可以利用我们丰富、高质量的内容,大幅提高执业和业务的速度、质量和效率。” Lexis+ AI 产品专为加拿大法律专业人士量身定制,将支持英语和法语交互,让全国各地的用户能够访问唯一一部最新的国家法律百科全书《哈斯伯里法典》®、加拿大唯一的法国民法百科全书《Juris Classeur ®》以及独特的英文和法文评论、诉状、动议和 Facta 法庭文件和实用指南。LexisNexis Legal & Professional 英国和 CEMEA LNNA 首席技术官 Philippe Poignant 表示:“LexisNexis 在使用人工智能技术方面拥有丰富的第一手经验,包括直接与主要的 LLM 创建者和值得信赖的云提供商合作,以开发更快、更准确、更透明和安全的生成式 AI 解决方案。”“作为法律人工智能和分析领域的领导者,我们最有能力提供这些先进技术,以加速客户的成功。” LexisNexis 正在负责任地开发法律人工智能解决方案,并由人工监督。作为 RELX 的一部分,LexisNexis 遵循 RELX 负责任的人工智能原则,考虑其解决方案对人们的实际影响,并采取行动防止产生或强化不公平的偏见。该公司对法律行业数据安全和隐私的承诺已超过 50 年。LexisNexis 雇佣了 2,000 多名技术专家、数据科学家和主题专家来开发、测试和验证其解决方案并提供全面、准确的信息。与此同时,LexisNexis Canada 宣布了其 Lexis+ AI Insider 计划,该计划面向全国的法律专业人士开放。该计划旨在通过生成性人工智能教育和 LexisNexis Canada 关于最新人工智能发展的突发新闻来支持法律行业。内部人士可以注册
(第三届学术研究前沿国际会议 ICFAR 2024,2024 年 6 月 15-16 日)ATIF/参考:Karimi, MU、Abubakar, SM、Mustafa, SJ 和 Ahmad, B.(2024 年)。人工智能和机器学习算法简介:综述。国际先进自然科学与工程研究杂志,8(5),30-34。摘要——本文广泛概述了人工智能 (AI) 和机器学习 (ML) 算法及其跨学科性质以彻底改变任何领域,讨论了它们的发展、基础、应用和挑战。人工智能和机器学习技术已经彻底改变了各个行业,推动了各个领域的创新和效率。本文探讨了人工智能和机器学习的多学科性质,强调了它们在分析大数据集、做出预测和自动化决策过程方面的重要性。它追溯了人工智能的历史里程碑,从艾伦图灵的开创性工作到深度学习和神经网络的兴起。本文介绍了机器学习算法的基础知识,包括监督学习、无监督学习和强化学习,以及它们在医疗保健、金融、工程、交通和电子商务中的实际应用。此外,本文还讨论了人工智能和机器学习技术面临的关键挑战,例如不确定性、算法选择复杂性和过度拟合,强调了持续研究和跨学科合作在应对这些挑战方面的重要性。本文的最终目标是加强人工智能和机器学习技术在塑造智能人工智能和机器学习驱动系统和智能社会的未来方面的范式改变潜力。
