糖胺聚糖(GAGS)在调节骨形态发生蛋白(BMP)信号传导中的作用代表了最近和未置换的区域。矛盾的报告提出了双重影响:有些表示积极影响,而另一些则表现出负面影响。这种二元性表明插口的定位(在细胞表面或细胞外基质内)或特定类型的GAG可能决定其信号传导作用。负责BMP2结合的乙酰肝素(HS)的精确硫酸盐模式仍然难以捉摸。BMP2表现出比其他GAG的结合偏爱与HS结合。使用模仿细胞外基质的特征良好的生物材料,我们的研究表明,与硫酸软骨素(CS)相反,HS促进了细胞外空间中的BMP2信号传导,从而增强了细胞表面的BMP2生物活性。进一步的观察结果表明,HS六糖内的中央IDOA(2 s)-GLCNS(6s)三硫化基序可增强结合。尽管如此,BMP2还是对各种HS硫酸盐类型和序列的适应性程度。分子动态模拟将这种适应性归因于BMP2 N末端柔韧性。我们的发现说明了GAG和BMP信号之间的复杂相互作用,突出了定位和特定硫酸化模式的重要性。这种理解对具有针对BMP信号通路的治疗应用的生物材料的发展具有影响。
Ce´ line Revenu, 1,2,6 Corinne Lebreton, 3,6 Magda Cannata Serio, 4,6 Marion Rosello, 1,2 Re´ mi Duclaux-Loras, 3 Karine Duroure, 1,2 Ophe´ lie Nicolle, 5 Fanny Eggeler, 2 Marie-The´ re` se Prospe´ ri, 4 Julie Stoufflet, 1 Juliette Vougny, 1 Priscilla Le´ pine, 4 Gre´ goire Michaux, 5 Nadine Cerf-Bensussan, 3 Evelyne Coudrier, 4 Franck Perez, 4 Marianna Parlato, 3,7, * 和 Filippo Del Bene 1,2,7,8, * 1 居里研究所,PSL 研究大学,INSERM U934,CNRS UMR3215,75248 Paris Cedex,法国 2索邦大学、法国国家健康与医学研究院、法国国家科学研究院、视觉研究所,75012 巴黎,法国 3 法国国家健康与医学研究院、UMR1163、肠道免疫实验室和想象研究所,75015 巴黎,法国 4 居里研究所、巴黎圣日耳曼研究大学、法国国家科学研究院、UMR 144 巴黎,法国 5 雷恩大学、法国国家科学研究院、IGDR(雷恩遗传与发展研究所),UMR 6290,35000 雷恩,法国 6 这些作者贡献相同 7 这些作者贡献相同 8 主要联系人 *通信地址:marianna.parlato@inserm.fr (MP)、filippo.del-bene@inserm.fr (FDB) https://doi.org/10.1016/j.celrep.2024.114941
摘要 — 触觉反馈在广泛的人机/计算机交互应用中至关重要。然而,触觉设备的高成本和低便携性/可穿戴性仍然是尚未解决的问题,严重限制了这种原本很有前途的技术的采用。电触觉界面具有更便携和更可穿戴的优势,因为它们的执行器尺寸减小,功耗和制造成本更低。电触觉反馈在人机交互和人机交互中的应用已被探索,以促进假肢、虚拟现实、机器人遥控操作、表面触觉、便携式设备和康复等应用中的基于手的交互。本文介绍了电触觉反馈的技术概述,以及其在基于手的交互中的应用的系统综述和荟萃分析。我们根据应用类型讨论了不同的电触觉系统。我们还对研究结果进行了定量讨论,以提供对最新技术的高层次概述并提出未来的方向。电触觉反馈系统显示出更高的便携性/可穿戴性,并且它们成功地呈现和/或增强了大多数触觉、引发感知过程并在许多场景中提高了性能。然而,我们发现了知识差距(例如,实施方案)、技术(例如,反复校准、电极的耐用性)和方法(例如,样本大小)缺陷,这些缺陷应在未来的研究中得到解决。
目标:非综合性口面裂(OFCS)病因涉及多个遗传和环境因素,具有超过60个识别的风险基因座;但是,他们仅占估计风险的少数。表观遗传因子(例如差异DNA甲基化(DNAM))也与OFCS风险有关,并且可以改变不同裂缝类型的风险并改变OFCS渗透率。dnam是将甲基(CH3)组的共价添加到核苷酸胞嘧啶中,可能导致靶基因表达变化。DNAM可能会受到环境影响和通过甲基化定量基因座(MEQTL)的影响。我们假设异常DNAN和基因表达的改变在OFC的病因中起着关键作用,并且某些影响OFCS风险的常见遗传变异是通过影响DNAM的。方法:我们使用了来自10个裂口相关的SNP和全基因组DNA甲基化数据(Illumina 450K阵列)的基因型,用于409例OFC和456个对照,并鉴定出23个与裂口相关的MEQTL。然后,我们使用362 cleft-不一致的SIB对的独立队列进行复制。我们使用甲基化特异性QPCR来测量每个CpG位点的甲基化水平,并结合基因型和甲基化数据,用于使用线性模型中的R package Matrixeqtl进行每个SNP-CPG对的相互作用分析。我们还进行了一个配对的t检验,以分析兄弟姐妹对的每个成员之间的DNA甲基化差异。配对t检验显示CG06873343(TTYH3)(p = 0.04)的显着差异; CG17103269(LPIN3)(P = 0.002)和CG19191560(LGR4)(p = 0.05)。结果:我们复制了9个MEQTL,显示了RS13041247(MAFB)-CG18347630(PLCG1)(P = 0.04)之间的相互作用; RS227731(NOG)-CG08592707(PPM1E)(p = 0.01); RS227731(NOG)-CG10303698(CUEDC1)(p = 0.001); RS3758249(FOXE1)-CG20308679(FRZB)(p = 0.04); RS8001641(SPRY2)-CG19191560(LGR4)(p = 0.04); RS987525(8Q24)-CG16561172(MYC)(P = 0.00000963); RS7590268(THADA)-CG06873343(TTYH3)(p = 0.04); RS7078160(VAX1)-CG09487139(p = 0.05); RS560426(ABCA4/ARHGAP29)-CG25196715(ABCA4/ARHGAP29)(p = 0,03)。结论:我们的结果证实了以前的证据,即通过GWAS研究检测到的某些常见的非编码变体可以通过表观遗传机制(例如DNAM)影响OFC的风险,例如DNAM最终会影响和调节基因表达。鉴于在大多数OFC基因组广泛的关联研究中,非编码SNP的流行率很高,我们的发现可能会解决主要的知识差距,例如缺少遗传力,降低的渗透率和与OFCS表型相关的可变表达性。
抑制或稳定有丝分裂中的 SUMO 化都会导致染色体分离缺陷,这表明蛋白质的动态有丝分裂 SUMO 化对于维持基因组的完整性至关重要。Polo 样激酶 1 - 相互作用检查点解旋酶 (PICH) 是一种有丝分裂染色质重塑酶,它通过三个 SUMO 相互作用基序 (SIM) 与 SUMO 化的染色体蛋白相互作用,以控制它们与染色体的结合。使用条件性 PICH 耗竭/PICH 替换的细胞系,我们发现有丝分裂缺陷与 PICH 对 SUMO 化染色体蛋白的功能受损有关。PICH 的重塑活性或 SIM 缺陷会延迟有丝分裂进程,这是由纺锤体组装检查点 (SAC) 激活引起的,这由着丝粒处 Mad1 焦点的持续时间延长所表明。通过对染色体 SUMO 化蛋白(其丰度受 PICH 活性控制)进行蛋白质组学分析,确定了可解释 SAC 激活表型的候选蛋白。在已确定的候选蛋白中,PICH 缺失时 Bub1 着丝粒丰度会增加。我们的研究结果证明了 PICH 和 SAC 之间的新关系,其中 PICH 直接或间接影响着丝粒上的 Bub1 关联,并影响 SAC 活性以控制有丝分裂。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
然而,未解决的炎症会导致慢性炎症性疾病,例如感染,胃炎,免疫介导的疾病,神经退行性疾病,心脏疾病疾病和癌症(Chen等人(Chen等人)2018; Arooj等。2023)。
根瘤菌是土壤细菌,可以与豆科植物建立氮固定共生。作为水平传播的共生体,根瘤菌的生命周期包括土壤中的自由生活阶段和植物相关的共生阶段。在整个生命周期中,根瘤菌暴露于与它们相互作用的无数其他微生物中,从而调节其拟合度和共生性能。在这篇综述中,我们描述了根茎与其他微生物之间相互作用的多样性,这些微生物在根际,结节开始和结节中可能发生。这些根瘤菌 - 微生物相互作用中的某些是间接的,并且发生某些微生物的存在以一种以根瘤菌的方式反馈的植物生理学的存在。我们进一步描述了这些相互作用如何对根瘤菌施加显着的选择性压力并修改其进化轨迹。对复杂的生物环境中根茎的生态进化动力学进行更广泛的研究可能会揭示出这种认真的共生相互作用的引人入胜的新方面,并为未来的农艺应用提供了关键的知识。
氯胺酮是一种分离性麻醉剂,可引起整体意识状态和相关大脑动态的变化。便携式低密度脑电图系统可用于监测这些影响。然而,之前的证据几乎为零,而且缺乏足够的方法来用少量电极解决整体动态问题。本研究深入研究大脑高阶相互作用 (HOI),以使用便携式脑电图探索氯胺酮的影响。在双盲交叉设计中,30 名男性成年人(平均年龄 = 25.57 岁,SD = 3.74)被施用外消旋氯胺酮,并与作为对照的盐水输注进行比较。记录了任务驱动(听觉异常范式)和静息态脑电图。使用先进的多元信息论工具计算 HOI,使我们能够量化所有可能的电极组合之间的非线性统计依赖关系。氯胺酮会导致脑动力学冗余度(可从 3 个或更多电极检索到的相同信息的副本)增加,在 alpha 频带中这种冗余度最为明显。在静息状态下,冗余度更为明显,这与意识状态向更分离的倾向转变有关。此外,在任务驱动的环境中(听觉异常),氯胺酮对可预测刺激(标准刺激)冗余度的影响比对异常刺激的影响更为显著。最后,观察到氯胺酮的 HOI 与现实解体体验之间的关联。氯胺酮似乎会在心理测量中增加冗余度和 HOI,这表明这些影响与意识向分离的改变有关。与事件相关电位 (ERP) 或标准功能连接指标相比,HOI 代表了一种创新方法,可在药物干预中结合从低密度干 EEG 获得的所有信号空间相互作用,因为它是唯一一种利用电极之间所有可能组合的方法。这项研究强调了复杂性测量与便携式脑电图设备相结合在监测意识变化方面的潜力,尤其是与低密度配置相结合时,为更好地理解和监测药物引起的变化铺平了道路。
原子建模通常分为两种不同类型的模拟。一方面,包括Hartree -Fock和密度功能理论(DFT)方法在内的量子方法被认为是最准确的,几乎用于任何类型的化学物种[1,2]。另一方面,经典力场用于执行精度较低的大规模和长期模拟[3,4]。但是,仍然很难连接这两种方法,直到现在,人们几乎无法执行涉及数百万个原子的纳秒原子的模拟,同时保留量子方法的准确性。在这种情况下,近年来已经提出了机器学习互动电位(MLIP),并显示出实现此类模拟的巨大潜力[5-7]。目前考虑了许多方法,包括人工神经网络[8],高斯近似方法[9],线性电位[10,11],频谱邻域分析电位[12],对称梯度域机器学习[13,14]和矩张量张量的电位[15]。这些技术的成功得到了成功解决的各种材料的认可:纯属金属[16-20],有机分子[21-24],氧化物[25,26],水[27 - 31],无定形材料[32 - 37]和HYBRIDPEROVSKITES [32 - 37]和HYBRIDERIDPEROVSKITES [38]。对于所有这些技术,主要过程包括对力场使用非常通用的分析公式,然后将其进行参数化以匹配DFT计算数据库,包括总能量,力和应力张量。但是,人们承认MLIP有时会显示出对学习数据库中未包含的系统的可传递性。在最坏的情况下,MLIP SO-WELL拟合到其学习数据库中,可以在其外观察到非物理行为。为了解决此问题,主要建议是定期检查电位的准确性,因为进行了机器学习分子动力学模拟并改善MLIP“ fly the Fly” [38 - 40]。,据我们所知,这种方法的这种缺陷从未经过定量调查,而在被用户和开发人员承认的同时。