� 游客 • 有限数量的一般和清晰信息 • 通过空间表示访问 • 引导导航 � 艺术生 • 一些基础知识 • 在不同类型的信息中进行选择 � 专家 • 精确的要求 • 所要求信息的详细描述
既要考虑由于缺乏知识而导致的不确定性的影响,又要减少这种影响 [1],[2]。一种方法是量化和分配不确定性来源中可接受的可变性。在本文中,这种方法称为“不确定性分配”。分配不确定性是必要的,以便系统架构师或设计师避免参数或行为的未知变化可能导致性能出现不良偏差的情况 [2]。不确定性分配还可用于识别确保约束满足的期望概率的不同潜在方法,或为低级几何特征分配适当的公差限度。我们的研究是近期和当前行业主导项目的一部分,包括飞机热整体集成概念 (TOICA) [3],[4] 和高级产品概念分析环境 (APROCONE) [5],表明不确定性分配确实被视为决策过程的一部分。然而,它主要基于经验,因此,决策者可能不知道可供权衡的全部选项。
摘要:在本研究中,我们利用 LoRa 传输技术提出了一种针对环境变量的物联网解决方案,以在 Things2People 过程中向用户提供实时信息,并通过促进 People2People 过程中的行为变化来实现节约。这些数据被存储起来,随后进行处理以识别模式并与可视化工具集成,这使我们能够在使用系统时开发环境感知。在这个项目中,我们基于 3D 可视化工具的开发实施了一种不同的方法,该工具在建筑物的交互式 3D 模型中呈现系统收集的数据、警告和其他用户的感知。这种数据表示引入了一种新的 People2People 交互方法,通过将传感器数据与用户的个人和集体感知相结合,在公共建筑等共享空间中实现节约。这种方法在 ISCTE-IUL 大学校园得到了验证,这种 3D 物联网数据表示在移动设备中呈现,并由此影响用户行为以实现校园可持续发展目标。
简介 ................................................................. . 14 商业环境............................................................... 14 未来商业趋势............................................... “......... 商业转型.................................................... 商业环境中的培训............................................... 培训概念............................................................... 培训瓶颈.................................................... 技术进步....................................................... 交互式多媒体的定义....................................... 交互式多媒体作为一种培训工具....................................... 从商业角度论证使用............................................. 学习者的优势.................................................... IM 应用程序成功案例案例研究....................................... 实施障碍....................................................
交互式模拟实验是评估相关场景中潜在军事结构的核心,军官们通过实验来规划和领导行动。需要一个合适的模拟平台,相关军事单位的模型必须在此平台上实施和校准。此类实验允许收集相关数据,例如通过模拟器日志文件、行动后审查和问卷调查。对收集到的数据进行分析可以揭示被测试军事结构的优势和劣势,并可以评估它们的相对性能。我们还建议将模拟系列的数据输出输入二次兰彻斯特模型,然后可用于扩展目的。在我们的方法中,军事主题专家在整个过程中发挥着重要作用,从场景开发到结果分析。
基于扩散的生成模型创建令人信服的图像的令人印象深刻的能力引起了全球关注。然而,它们的复杂内部结构和操作通常会挑战非专家。我们引入了扩散,这是第一个交互式可视化工具,以阐明稳定的扩散变速器如何在图像中提示稳定。它紧密地概述了稳定扩散的组件的视觉概述,并详细说明了其基础操作。此集成使用户能够通过动画和交互式元素在多个级别的抽象之间流动过渡。提供实时的动手体验,扩散解释器允许用户在而无需安装或专业硬件的情况下调整稳定扩散的超参数和提示。通过用户的网络浏览器访问,扩散范围在民主的AI教育方面取得了长足的进步,从而促进了更广泛的公共服务。超过7,200名跨越113个国家/地区的用户在https:// poloclub上使用了我们的开源工具。github.io/diffusion-explainer/。可以在https://youtu.be/mbkiadzjpna上获得视频演示。
log P(y | x)≥EQ(z | x,y)[log P(y | x,z)] - d kl(q(z | x,y)| p(z | x)])证据下限
在本文中,我们介绍了分布式交互式证明的量子对应物:现在可以是量子位,网络的节点可以执行量子计算。本文的第一个结果表明,通过使用分布式量子交互式证明,可以大大减少相互作用的数量。更确切地说,我们的结果表明,对于任何常数K,可以由k-turn classical(即非量词)分布式交互式协议决定的语言类别,具有F(n)-bit证书大小中包含的语言中包含,可以由5-Turn分布式量子交互协议与O(f(f(f(f))),可以决定使用5-Turn分布式交互协议。我们还表明,如果我们允许使用共享的随机性,则可以将转弯数减少到三个。由于目前尚无类似的转向还原经典技术,因此我们的结果也证明了在分布式交互式证明的设置中量子计算的力量。
摘要。Quantum Flytrap 的 Virtual Lab 是一个无代码的光学桌在线实验室,以交互和直观的方式呈现量子现象。它支持最多三个纠缠光子的实时模拟。用户可以使用拖放式图形界面放置典型的光学元件(例如分束器、偏振器、法拉第旋转器和探测器)。Virtual Lab 以两种模式运行。沙盒模式允许用户组合任意设置。Quantum Game 是 Virtual Lab 功能的入门,适合没有接触过量子力学的用户。我们介绍了纠缠态和纠缠度量的可视化表示。它包括 ket 符号的交互式可视化和量子算子的热图式可视化。这些量子可视化可以应用于任何离散量子系统,包括具有量子位和自旋链的量子电路。这些工具以开源 TypeScript 包的形式提供 - Quantum Tensors 和 BraKetVue。虚拟实验室可以探索量子物理的本质(状态演化、纠缠和测量)、模拟量子计算(例如 Deutsch-Jozsa 算法)、使用量子密码术(例如 Ekert 协议)、探索违反直觉的量子现象(例如量子隐形传态和违反贝尔不等式),以及重现历史实验(例如迈克尔逊-莫雷干涉仪)。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。分发或复制本作品的全部或部分内容需要完全注明原始出版物的出处,包括其 DOI。[DOI:10.1117/1.OE.61.8.081808]
Swindon Heritage行动区(HAZ)将重点放在Swindon历史悠久的铁路村庄周围的地区。已经准备了一个雄心勃勃的总体规划,它将为关键的历史建筑和空间提供增强功能。其中包括健康水电,板球运动员,马车工厂,机械师研究所和GWR公园。人行道,标牌和公共场所也将得到改善,以便更好地将该区域连接到更广阔的市中心。将组织促销活动,展览,出版物和旅行,以提高人们对史温顿对居民历史的认识。