c生物工程,生物材料和纳米医学(Ciber-BBN)的生物医学研究网络中心,Calle Monforte de Lemos 3-5,马德里,西班牙leo.salgado@csic.es leo.salgado@csic.es基于石墨烯基于求解的溶液基因菲尔德型现场效应晶体管(GSGFET)(GSGFFET)(图。1)在生物医学技术中变得重要。为其应用是对石墨烯 - 电解质界面行为的更好了解[1]。此接口可能会受到几个因素的影响,从而修改最终设备的性能。在第一种方法中,可以将其建模为电容(C INT),该电容与晶体管通道面积成反比[2]。这将其直接观察限制在某些尺寸以下,这主要是由于对连接轨道的寄生作用。在这里,我们已经制造了不同尺寸(50x50,100x100和300x300μm)的独立GSGFET,以测量电化学阻抗光谱谱(EIS),以直接评估界面互动的界面电容,以及通过频率响应的频率效应,通过分析(通过分析频率)进行频率效应(通过分析频率)(通过分析)进行了频率(通过分析)。即使我们期望在频率上具有恒定的电容性行为,EIS结果显示出两个不同的电容响应,由电阻过渡隔开(图2和3)。另外,对于GM结果也观察到了相同的行为,由于这两个不同的耦合能力,即使在较小的GSGFET处,在相同的频率下,有两个不同的收益出现在相同的频率下,在较小的GSGFET下,EIS受寄生效应的限制。最后,在两种方法中,都观察到频率过渡取决于pH(图4),促使以下假设:这种现象可以与GSGFET的SIO 2底物的末端组相互作用。所有这些结果证明,GM频率响应的采用是表征小型制造设备中C INT的有价值工具。使用这种方法获得的数据将非常有用,对于鉴定制造干扰物和改进用于分析GSGFET获得的生物学数据的校准方法。参考文献[1] R. Garcia-Cortadella et al。,Small,16(2020)1906640 [2] E. Masvidal-Codina等人,Nature Mater。,18(2019)280-288个数字
几十年来,植入式电神经调节系统一直是神经系统疾病患者临床护理流程的重要组成部分。深部脑刺激 (DBS) 和脊髓刺激系统在临床上的广泛应用为利用植入式神经刺激设备推进慢性设备神经调节研究提供了重要的技术途径。与疾病相关的电生理神经生物标志物(例如丘脑底核中的 β 波段振荡活动和发作间期癫痫样放电)的识别证明了通过自适应系统改善治疗的潜力。这带来了一个挑战:该领域需要人类使用的试验设备,将颅内传感能力与已建立的基于刺激的疗法相结合,形成一个慢性和植入式研究平台。为了应对这一挑战,早期的植入式研究工具是在现有临床神经调节设备的基础上开发的,并增加了扩展的硬件、固件和软件包,以支持利用传感增强治疗的研究。基于传感的神经调节设备的行为范围很广,可以从基于神经活动触发刺激(例如,NeuroPace 脑反应性神经刺激 (RNS) 系统在癫痫放电反应中触发刺激),到通过连续刺激调整来调节病理回路的闭环系统,以利用反馈原理将生物标志物保持在健康范围内(例如,使用 Medtronic Activa PC+S 和 Summit RC+S 系统研究的自适应 DBS (aDBS) 方法根据频谱带功率测量值调整刺激)。从 RNS 到 aDBS 的演变代表了神经技术的不断改进及其在大脑和设备之间创建实时双向接口的能力。这些技术进步为特发性震颤 1 、帕金森病 2 、癫痫 3 和图雷特综合症 4 等疾病带来了新的见解。许多此类研究需要与制造商签订研究协议,但最近,带有“标签上”脑感应功能的神经刺激器(如 Medtronic Percept PC)的商业化应用正在促进它们的研究用途。
摘要:认识到电解质化学和电极界面在锂电池的性能和安全性中的关键作用,以及对更复杂的分析方法的迫切需求,这项全面的综述在此研究领域中得分了机器学习的希望(ML)模型。它探讨了这些创新方法在研究电池界面中的应用,尤其是专注于锂金属阳极。在传统实验技术的局限性中,综述支持了一种混合方法,该方法将实验和模拟方法融合,从而使颗粒状的见解能够对分子水平的电池界面的形成过程和特征,并利用AI来从大量数据集中提取模式。它在电解质设计和电池寿命预测中展示了此类技术的实用性,并介绍了电池接口机制的新视角。审查结束了,通过断言人工智能(AI)或ML模型作为电池研究的宝贵工具的潜力,并强调了促进对科学社区中这些技术信心的重要性。
导电氧化物界面引起了广泛关注,这既是因为基础科学的原因,也是因为氧化物电子设备的潜力。这种设备技术成熟的一个重要差距是可扩展性和控制电子特性的途径,这可能会缩小设备工程空间。在这里,我们展示并解释了高度可调的导电氧化物界面的机制。我们使用可扩展且与行业兼容的原子层沉积 (ALD) 技术合成了非晶态-结晶态 Al 2 O 3 /SrTiO 3 界面。在 ALD 室中使用 NH 3 等离子体预处理,并将其持续时间用作电性能的调整参数,其中在室温下观察到三个数量级的薄层电阻跨度。对于导电性最强的样品,我们的结果与使用最先进的外延生长技术(例如脉冲激光沉积)制备的全晶态氧化物界面的最高载流子密度值相当。我们将导电性的起源确定为 NH 3 等离子体预处理引起的 SrTiO 3 还原引起的氧空位。这些结果提供了一种实现导电氧化物界面的简单、可扩展且与工业兼容的途径,具有广泛的参数空间,为氧化物器件工程提供了多功能且灵活的工具包。
2019年,全球糖尿病患病率估计为9.3%(4.63亿),到2030年,到2030年,到2045年,到2030年,到10.2%(5.78亿)。。 城市(10.8%)的患病率高于农村地区(7.2%)。 fur-hoverore,高收入(10.4%)的频率比低收入国家(4.0%)[13]高得多。 抑郁症包括许多情绪,认知和行为或躯体症状(图) 1)[14]。 抑郁症与多种疾病有直接或间接的关系,包括阿尔茨海默氏病,中风,癫痫,糖尿病,心血管疾病和癌症[15],患有慢性疾病的个体患者的抑郁症患病率显着高于没有[14]。 糖尿病与抑郁症的风险增加有关[16-19]。 同时,抑郁症患者患糖尿病的风险比没有抑郁症的人高30%以上[20,21]。 糖尿病与抑郁之间这种双向关系背后的潜在病理生理机制并未完全阐明,但炎症机制和胰岛素抵抗似乎起着重要作用[4]。 糖尿病和抑郁症都与全身性低度炎症的慢性状态有关,最近的荟萃分析表明,与2型糖尿病患者相比,2型糖尿病和合并症患者的血液浓度C反应蛋白和白介素6(IL-6)的血液浓度更高。 1)[24]。 这些变化与2型糖尿病和抑郁症有关[26,27]。2019年,全球糖尿病患病率估计为9.3%(4.63亿),到2030年,到2030年,到2045年,到2030年,到10.2%(5.78亿)。城市(10.8%)的患病率高于农村地区(7.2%)。fur-hoverore,高收入(10.4%)的频率比低收入国家(4.0%)[13]高得多。抑郁症包括许多情绪,认知和行为或躯体症状(图1)[14]。抑郁症与多种疾病有直接或间接的关系,包括阿尔茨海默氏病,中风,癫痫,糖尿病,心血管疾病和癌症[15],患有慢性疾病的个体患者的抑郁症患病率显着高于没有[14]。糖尿病与抑郁症的风险增加有关[16-19]。同时,抑郁症患者患糖尿病的风险比没有抑郁症的人高30%以上[20,21]。糖尿病与抑郁之间这种双向关系背后的潜在病理生理机制并未完全阐明,但炎症机制和胰岛素抵抗似乎起着重要作用[4]。糖尿病和抑郁症都与全身性低度炎症的慢性状态有关,最近的荟萃分析表明,与2型糖尿病患者相比,2型糖尿病和合并症患者的血液浓度C反应蛋白和白介素6(IL-6)的血液浓度更高。1)[24]。这些变化与2型糖尿病和抑郁症有关[26,27]。另一方面,合并症糖尿病和抑郁症患者的脑衍生神经营养因子(BDNF)的外周血浓度较低[22]。糖尿病和抑郁症的另一种共同表现是下丘脑 - 垂体 - 丁香皮质(HPA)的失调[23]。在压力和调节免疫功能,葡萄糖代谢和睡眠下,该途径很重要,这是两种疾病中都改变的指标(图在应力下,当HPA轴激活时,促肌动物释放激素(CRH)和精氨酸加压素(AVP)被分泌从下丘脑的室室核中分泌。CRH和AVP刺激前垂体,以分泌肾上腺皮质激素(ACTH),通过血液,ACTH导致肾上腺皮质中的糖皮质激素和矿物皮质激素产生。从肾上腺皮质分泌的皮质醇随后通过刺激肝脏中的糖异生和减少肌肉和白色脂肪组织中的葡萄糖摄取来增加血糖水平,从而拮抗胰岛素对葡萄糖稳态的作用。这可能会进一步加剧胰岛素抵抗,增加饥饿并导致体重增加和高血糖[25]。在急性压力期间,这种反应对于生存至关重要,而慢性应激(如抑郁症)可能会产生有害影响。最终,皮质醇水平升高的HPA轴的长期慢性激活可能导致皮质醇失调和反馈控制机制改变。激励和说服糖尿病患者改变生活方式并遵守治疗通常已经是一项艰巨的任务。代谢应激也可能导致HPA轴的激活,在小鼠中,高脂含量会导致肾上腺的肥大和HPA轴的过度激活[28]。糖尿病和抑郁症的共发生不仅是直接的,而且由于其对患者依从性和自我激励的影响,对人类健康的间接后果。具体来说,由于自我管理变得更具挑战性,需要大大损害糖尿病患者的生活质量以及对糖尿病管理的更密集支持[29]。如果这些患者还遭受抑郁症,则变得更加复杂。糖尿病并发症,胰岛素使用和教育状况已被确定为2型糖尿病患者合并性疾病的风险因素,而定期锻炼,性别,婚姻状况和当前社会地位被证明是保护因素[30]。此外,年龄是糖尿病和抑郁症的常见危险因素[31]。因此,妇女,教育程度低的人和居住在农村地区的人的风险更高,而已婚并定期进行运动保护,以防止2型糖尿病患者的合并抑郁症[17,30]。因此,随着生活期望的日益增长,糖尿病和抑郁症代表了医疗系统的严重负担。因此,重要的是促进筛查活动并引入针对性和个性化抑郁症的治疗,以降低糖尿病短期和长期结局不良的风险[17]。
电子元件的可靠性一直是工程师面临的挑战。本研究解决了了解随机振动对无铅焊料作为电子元件内热界面材料 (TIM) 的可靠性的影响这一关键需求。ANSYS 软件用于设计、开发和模拟电子模型,重点关注 TIM。SAC405 无铅焊料用作 TIM,其厚度在 0.01 到 0.06 毫米之间变化(间隔为 0.01 毫米)。本研究的结果揭示了相关的相关性。随着 TIM 厚度的增加,应力和应变明显减少,而变形增加。值得注意的是,TIM 厚度和疲劳寿命之间存在直接关系;较厚的 TIM 与增加的疲劳寿命相关。此外,当 TIM 厚度为 0.01 毫米时,公式 1、2 和 3 的疲劳寿命测量值分别为 2.76 x 104、1.63 x 104 和 0.792 x 104。这些发现对工程师具有深远的影响,如果使用无铅焊料作为 TIM,它们将作为指导框架,帮助选择电子元件的最佳 TIM 厚度。了解应力、应变、变形和疲劳寿命之间的权衡至关重要,使工程师能够在电子系统设计和开发过程中做出明智的决策,最终提高整体可靠性。本研究建议在电子应用中使用无铅焊料作为 TIM,因为它具有热和可靠性方面的优势。
近年来,新型二维(2D)材料的开发在推进生物传感器设备的医疗保健应用程序中起着关键作用,这是由于其独特的特性。1这些材料具有显着的属性,例如高表面与体积比,特殊的电导率和生物相容性。此外,它们的超薄性质允许与生物分子的有效相互作用,从而增强了检测各种生物标记物的灵敏度。2D材料的固有特性促进了高度敏感和选择性的生物传感器的发展,从而可以准确,快速检测与健康状况相关的生物标志物,从而对医疗保健诊断和监测产生了重大贡献。在为医疗保健应用提出的一系列技术中,电化学感知成为最有希望的,这主要是由于其成本效果,易于操作,高灵敏度,高灵敏度以及与服务点(POC)设备的兼容性。2这项技术已熟练地集成到可穿戴,便携式和可植入系统中。3,例如,基于单壁碳纳米管屏幕打印电极的电化学设备已成功用于单步监测SARS-COV-2 SPIKE蛋白。4
(表示可以将哪些类型的票路由到回收分销商),然后您会知道将收到哪种类型的发票3703回复:00 04 04(发票类型2回收:回收者:000000000000000000100)并比较理解3。激活回收器
摘要。本文研究了在有限的许多谐振器链中的浪潮定位。有一个广泛的理论,可以预测在有限周期性系统中缺陷引起的局部模式的存在。这项工作将这些原理扩展到有限尺寸的系统。我们考虑在结构中具有几何缺陷的二聚体的亚波长谐振器的有限系统。这是Schrie效模型的经典波浪类似物。我们证明存在用于缺陷的有限二聚体结构的光谱差距,并发现特征值在光谱间隙内与其相关本本特征模式的定位之间存在直接关系。然后,我们显示了缺陷结构中特征值的存在和独特性,证明存在独特的局部接口模式。据我们所知,我们的方法基于Chebyshev多项式,是第一个在有限的许多共振器系统中定量表征局部界面模式的第一个。