在没有靶标切割的情况下,催化失活的 dCas9 通过在空间上阻止 CRISPR (cr)RNA 指向的给定基因上的 RNA 聚合酶活性来施加转录基因抑制。这种基因沉默技术称为 CRISPR 干扰 (CRISPRi),已用于各种细菌物种以检测基因,主要是单独或成对检测。在这里,我们在病原体 Legionella pneumophila 中开发了一个多路复用 CRISPRi 平台,能够同时沉默多达十个基因。通过将强进行性启动子与重复/间隔序列上游的 boxA 元素相结合,克服了 Rho 依赖性转录终止对前体 crRNA 表达的限制。使用针对毒力蛋白编码基因的 crRNA,我们证明 CRISPRi 不仅在无菌培养基中生长期间完全发挥作用,而且在巨噬细胞感染期间也完全发挥作用,并且 CRISPRi 的基因耗竭完全重现了缺失菌株的生长缺陷。重要的是,通过改变重复/间隔序列中 crRNA 编码间隔序列的位置,我们的平台实现了目标的逐渐消耗,这反映在表型的严重性上。因此,多重 CRISPRi 有望用于大量探测大量基因,以破译 L. pneumophila 和其他细菌病原体的毒力策略。
单个原子缺陷是关注主机量子状态的突出窗口,因为来自主机状态的集体响应是在缺陷周围作为局部状态出现的。费米液体中的弗里德尔振荡和围绕云是典型的例子。然而,对于量子自旋液体(QSL)的情况是巨大的,这是一种具有分数化准粒子的异国情调状态,造成量子纠缠的深远影响而产生的拓扑顺序。由于分数化准粒子的电荷中立性和QSL的绝缘性质,阐明基本的局部电子特性一直在挑战。在这里,使用光谱成像扫描隧道显微镜,我们报告了金属底物上最有希望的Kitaev QSL候选者单层α -rucl 3的原子解析图像。我们发现在绝缘子表现出的量子干扰是围绕具有特征性偏见依赖性的缺陷的局部状态密度的不稳定和衰减的空间振荡。振荡与本质上的任何已知空间结构不同,并且在其他Mott绝缘子中不存在,这意味着它是一种与α -rucl 3独有的激发有关的异国情调振荡。数值模拟表明,可以通过假设Kitaev QSL的巡游主要植物散布在Majoraana Fermi表面上,可以通过假设射击振荡来复制。振荡提供了一种新的方法,可以通过局部响应来探索Kitaev QSL,以针对金属中的Friedel振荡等缺陷。
摘要 通过在具核梭杆菌中创建框内缺失突变来使基因失活非常耗时,并且大多数具核梭杆菌菌株在遗传上是难以处理的。为了解决这些问题,我们引入了一种基于核糖开关的可诱导 CRISPR 干扰 (CRISPRi) 系统。该系统采用核酸酶失活的化脓性链球菌 Cas9 蛋白 (dCas9),通过持续表达的单向导 RNA (sgRNA) 特异性地引导至目的基因。从机制上讲,这种 dCas9-sgRNA 复合物成为 RNA 聚合酶难以逾越的障碍,从而抑制了目标基因的转录。利用这个系统,我们首先研究了两个非必需基因 ftsX 和 radD,它们对于具核梭杆菌的胞质分裂和共聚集至关重要。添加诱导剂茶碱后,ftsX 抑制导致类似于染色体 ftsX 缺失的丝状细胞形成,而靶向 radD 则显著降低 RadD 蛋白水平,消除 RadD 介导的共聚集。随后将该系统扩展到探测必需基因 bamA 和 ftsZ,这两个基因对于外膜生物合成和细胞分裂至关重要。令人印象深刻的是,bamA 抑制破坏了膜完整性和细菌分离,阻碍了生长,而 ftsZ 靶向会在肉汤中产生细长的细胞,并且琼脂生长受到损害。对 F. nucleatum 临床菌株 CTI-2 和 Fusobacterium periodonticum 的进一步研究表明,靶向 tnaA 时吲哚合成减少。此外,沉默 F. periodonticum 中的 clpB 会降低 ClpB,从而增加热敏感性。总之,我们的 CRISPRi 系统简化了各种梭杆菌菌株的基因失活。
光学干扰过滤器用于现代光学元件的大多数区域,因为它们允许修改高精度光学系统中光传播和运输的参数:反射,传输,吸收,吸收,相位和极化,脉冲持续时间,脉冲持续时间等[1-4]。因此,这些光学特性是由波长,入射角和极化的函数控制的。例如,今天,我们合成和制造了许多光学功能,例如抗反射器,极化器和束分式拆分器,二分色过滤器,镜像和窄带过滤器,多PIC过滤器,高和低通滤波器,高通滤波器,逆滤波器,逆滤波器,chir滤波器和其他滤镜。合成(或设计或反问题)技术从数学和算法的角度取得了很大发展,到现在可以将任何任意光学(强度)函数与多层合构成的点。同时,制造技术已经发生了很大的发展,因此现在可以生产几百个薄层不同材料的过滤器,每一层的厚度从几nm到几百nm不等。某些问题自然保持开放,例如(除其他)相位和宽带特性,大块和微材料以及非光学特性。用于旗舰应用,例如引力波[5,6]或陀螺仪的镜子,而空间光学器件,当前的挑战是打破PPM屏障,即确保通过吸收和散射造成的总损失少于入射通量的100万。尽管假想索引(几个10-6)和多层组件中的低粗糙度(nm的一部分),但尚未达到这种艺术状态。应注意,这些损失也与组件的激光通量抗性直接相关,具体取决于照明状态[7]。在最低的光学损失的最后背景下,这项工作已经进行了。在所需的精度水平上,我们需要分析吸收机制的细节,考虑到这种吸收被转移到热传导,对流和辐射的过程中。对这种光诱导的热辐射的分析[8-10]至关重要:首先,它使我们能够追踪非常低的吸收水平(目前难以测量10-6以下),这可以允许确定
1998 年发现的 RNA 干扰为基因表达的操纵开辟了道路,从而推动了小干扰 RNA (siRNA) 药物的开发。Pa tisiran 是 FDA 批准的首个 siRNA 药物,其靶向治疗伴有多发性神经病的遗传性转甲状腺素蛋白淀粉样变性。Givosiran、lumasiran 和 nedosiran 进一步扩大了 siRNA 在治疗罕见遗传病方面的应用,并显示出积极的成果。在心脏病学领域,inclisiran 被批准用于治疗高胆固醇血症,可持续降低 LDL 胆固醇水平。然而,正在进行的研究旨在确定其对心血管结果的影响。脂蛋白 (a) 是动脉粥样硬化性心血管疾病的独立风险因素,已成为 siRNA 疗法的焦点,并促进了 olpasiran、zerlasiran 和 lepo disiran 等特定 siRNA 药物的开发,这些药物有望降低脂蛋白 (a) 水平。目前正在进行研究,评估这些药物在减少事件发生方面的有效性。Zodasiran 和 plozasiran 针对富含甘油三酯的脂蛋白,解决心血管疾病的潜在风险因素。
运动图像(MI)与Neurofeatback(NF)结合使用,是一种有希望的补充剂,可促进脑损伤后运动能力的获取和恢复受损的运动能力。但是,控制MI NF的能力受到广泛的个体间变异性的影响。大量用户在取得良好的结果方面遇到了困难,这损害了他们在学习或康复环境中从Mi NF中受益的机会。已经提出,上下文因素(即实际运动任务之外的因素)可以解释运动技能的个体差异。回顾性声明性干扰和睡眠已经被确定为运动执行(ME)和基于MI的实践的关键因素。在这里,我们研究了这些发现是否概括为练习mi nf。三个组在随后的两天进行了三个用NF练习MI的三个块。在两个组中,MI NF块之后是立即或延迟的声明内存任务。对照组仅执行MI NF,没有特定的干扰任务。在实验的第一天,第二天的第三天运行了两个mi nf块。在mu和beta频率事件事件相关的对同步(ERD)中,在块NF中有显着的内部收益,其中所有组都很明显。但是,数据并未提供有关立即或延迟对Mi nf ERD的宣告性干扰的影响的证据。另外,在睡觉过夜后,Mi nf Erd保持不变。我们没有观察到有关声明性干扰和睡眠的预期结果模式。这是在可变实验任务设计,个体间差异和绩效指标的背景下讨论的。
摘要 阿拉伯半乳聚糖蛋白 (AGP) 是一种富含羟脯氨酸的蛋白质,含有高比例的碳水化合物,广泛分布于植物界。AGP 被认为在植物发育过程中发挥重要作用,特别是在有性植物生殖中。然而,这些分子中的大量功能仍有待发现。在这篇综述中,我们讨论了两种革命性的遗传技术,它们能够以简单有效的方式解码这些糖蛋白的作用。RNA 干扰是植物生物学中经常使用的一种促进基因沉默的技术。成簇的规律间隔短回文重复序列 (CRISPR)-相关蛋白 9 (CRISPR/Cas9) 是几年前出现的一种革命性的基因组编辑技术,它允许在包括植物在内的多种生物中获得无效突变体。这两种技术之间存在一些差异,根据研究目标,这些差异可能成为优势或劣势。在目前的研究中,我们建议使用这两种技术来轻松快速地获得 AGP 突变体,有助于揭示 AGP 的作用,这对未来无疑是一笔巨大的财富。
由于无线电信设备的指数增长,对有效的电磁干扰(EMI)屏蔽材料的需求很大。这些设备发出的电磁辐射会破坏电子设备并引起健康危害。因此,开发可以保护设备和人类免于电磁辐射的材料至关重要。在这种情况下,纳米复合材料具有巨大的优势,这是因为可以调整界面以及在纳米复合材料中使用磁性和介电成分的互补特性来增强EMI屏蔽性能。这项工作表明,通过仔细调整合成参数,我们可以生长氧化双相锂(Ferri磁性α -Life 5 O 8和顺磁性α -LifeO 2)纳米复合材料,具有不同的两个阶段相对级分。相位分数的变化和两个阶段的同时增长使我们能够控制两个相之间的接口以及纳米复合材料的物理特性,这对EMI屏蔽性能有直接影响。详细的结构(X射线衍射),成分(拉曼规格Troscopicy)和形态学(高分辨率透射电子显微镜)表征得出了,以了解合成条件对EMI屏蔽参数的影响。改进的介电和磁性性能以及样品中的界面数量增加,几乎相等的两个阶段导致最佳性能。这项工作证明了使用具有可控界面和物理性能的EMI屏蔽的双相磁氧化物纳米复合材料的重要潜力,EMI屏蔽层将来可以构成更复杂的三式系统的基础。
量子启发模型在许多下游语言任务(如问答和情感分析)中表现出色。然而,最近的模型主要关注嵌入和测量操作,忽略了量子演化过程的重要性。在这项工作中,我们提出了一种新型的量子启发神经网络 LI-QiLM,它集成了林德布拉德主方程 (LME) 来建模演化过程和干涉测量过程,提供更多的物理意义以增强可解释性。我们对六个情感分析数据集进行了全面的实验。与传统神经网络、基于 Transformer 的预训练模型和量子启发模型(如 CICWE-QNN 和 ComplexQNN)相比,所提出的方法在六个常用的情感分析数据集上表现出卓越的准确率和 F1 分数。额外的消融测试验证了 LME 和干涉测量的有效性。
低地球轨道 (LEO) 卫星数量的不断增加增强了全球通信和地球观测,支持太空商业是许多政府的首要任务。与此同时,低地球轨道卫星数量的激增对天文观测和研究以及暗夜静谧天空的保护产生了负面影响。这些卫星将阳光反射到光学望远镜上,其无线电发射影响射电天文台,危及我们通过天文学获得重要科学发现的机会。天空外观的变化也影响着我们的文化遗产和环境。地面天文台和低地球轨道上的太空望远镜都受到影响,由于卫星星座的全球性,地球上没有任何地方可以逃脱其影响。受干扰最小的暗夜静谧天空 1 对于开展天文学基础研究以及行星防御、技术开发和高精度地理定位等重要公共服务至关重要。
