我们研究了限制具有金属/铁电/夹层/Si (MFIS) 栅极堆栈结构的 n 型铁电场效应晶体管 (FeFET) 耐久性的电荷捕获现象。为了探索电荷捕获效应导致耐久性失效的物理机制,我们首先建立一个模型来模拟 n 型 Si FeFET 中的电子捕获行为。该模型基于量子力学电子隧穿理论。然后,我们使用脉冲 I d - V g 方法来测量 FeFET 上升沿和下降沿之间的阈值电压偏移。我们的模型很好地符合实验数据。通过将模型与实验数据拟合,我们得到以下结论。(i)在正工作脉冲期间,Si 衬底中的电子主要通过非弹性陷阱辅助隧穿被捕获在 FeFET 栅极堆栈的铁电 (FE) 层和夹层 (IL) 之间的界面处。 (ii) 基于我们的模型,我们可以得到在正操作脉冲期间被捕获到栅极堆栈中的电子数量。 (iii) 该模型可用于评估陷阱参数,这将有助于我们进一步了解 FeFET 的疲劳机制。
Xue Liu 1 , Jiajie Pei 1, 2 , Zehua Hu 1 , Weijie Zhao 1 , Sheng Liu 1 , Mohamed-Raouf Amara 1 , Kenji Watanabe 3 , Takashi Taniguchi 4 , Han Zhang 2 , Qihua Xiong 1, 5 * 1 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological大学,新加坡637371,新加坡。2 2, 伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。2, 伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。通过使用微拉曼和光致发光光谱的组合,我们证明了调制起源于同时操纵电荷和/或在每个两个相邻层之间的能量转移。关键字:2D材料,范德华异质结构,拉曼和光致发光光谱,层间电荷和能量传递,带工程
随着镁增材制造技术发展到更高的技术成熟度水平 [1],医疗器械和石油压裂行业寻求利用 3D 打印优势实现承载设备的时间分辨降解。这些行业的镁部件需要在高腐蚀性服务环境中保持结构完整性一段时间。预期使用寿命结束后,需要完全溶解。例如,需要具有时间依赖性强度和完整性的生物可吸收骨科植入物,以便在数周内输送消炎药物,以控制术后疼痛并加快骨骼恢复。此外,镁合金可在水力压裂过程中作为具有时间分辨强度的可降解塞部署在油井中。这些塞子在井中提供高压隔离,并在几天内完全溶解,不会产生碎片或管道堵塞。通过使用混合 AM 在空间上控制整个体积的耐腐蚀性,可以实现对降解的时间分辨控制。在增材制造过程中使用夹层冷加工可以使镁具有功能化的界面特性。本研究旨在了解这些 3D 机械性能的累积形成(即全局完整性)以及层间超声喷丸导致的腐蚀行为。全局完整性一词是指在循环打印和层间冷加工过程中积累的层内局部变化 [2],最终影响整体行为 [3]。了解驱动整体行为的机制仍然是混合增材制造研究中的关键知识空白。该方法在粉末床熔合过程中每 20 层对可降解镁 WE43 合金进行一次超声喷丸。虽然已知表面喷丸会引起加工硬化、晶粒细化和压缩残余应力,这些最初会延缓腐蚀 [4],但问题是,一旦表面处理层溶解,就会发生快速且不受控制的腐蚀。抑制腐蚀的表面下屏障区域的潜在假设是,随后在表面打印引起的退火
二维材料中的层间电子耦合可通过堆叠工程实现可调和的突发特性。然而,它也会导致二维半导体电子结构的显著演变和激子效应的衰减,例如当单层堆叠成范德华结构时,过渡金属二硫属化物中的激子光致发光和光学非线性会迅速降低。这里我们报告了一种范德华晶体——二氯化氧化铌 (NbOCl 2 ),其特点是层间电子耦合消失,块体形式下具有单层状激子行为,以及比单层 WS 2 高三个数量级的可扩展二次谐波产生强度。值得注意的是,强二阶非线性使得能够通过自发参量下转换 (SPDC) 过程在薄至约 46 纳米的薄片中产生相关参量光子对。据我们所知,这是第一个在二维层状材料中明确展示的 SPDC 源,也是有史以来报道的最薄的 SPDC 源。我们的工作为开发基于范德华材料的超紧凑片上 SPDC 源以及经典和量子光学技术中的高性能光子调制器开辟了一条道路 1–4 。
图S2显示了一个简化的MIC阶段的通用模型,用于n = 1.75的FSI插入。如主文本中指定的,可以看到在石墨烯层之间有或没有intercalant的画廊的交替。多个插入阶段的共存将导致使用公式1.如果占用石墨烯层之间的每个空间,则N等于1,并且X射线衍射图上的反射00n+1应该消失。这是对PF 6-阴离子的观察到的,但是,该过程的性质仍然可以讨论,并计划对此进行详细研究。我们介绍了两种情况的MIC期限。观察到的现象的另一个原因可能是主要文本中指定的两种机制的混合物:层间空间的顺序和随机统计填充。随着温度升高,可能会预期客人物种的随机分布,因为熵因子对系统的吉布斯自由能的贡献应相应增加。此外,还必须注意以下事实:根据其初始层间间距,由温度引起的互化机制的变化可能有所不同,这将代表一个有趣且广泛的方向探索。阴离子扩散
extended 2D Tinkham model Yue Liu, 1,2,† Yuhang Zhang, 1,2,† Zouyouwei Lu, 1,2,† Dong Li, 1,3,* Yuki M. Itahashi, 3 Zhanyi Zhao, 1,2 Jiali Liu, 1,2 Jihu Lu, 1,2 Feng Wu, 1,4 Kui Jin, 1,2,5 Hua Zhang,1 Ziyi Liu,1小居,1,2,5,** Zhongxian Zhao,1,2,5 1北京国家冷凝物质物理学实验室,物理研究所,中国科学院,中国100190,中国。2个物理科学学院,中国科学院,北京100049,中国。 3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。 4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。 5,中国广东523808的东瓜材料实验室。 摘要。 批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。 然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。 在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。 为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。2个物理科学学院,中国科学院,北京100049,中国。3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。 4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。 5,中国广东523808的东瓜材料实验室。 摘要。 批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。 然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。 在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。 为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。5,中国广东523808的东瓜材料实验室。摘要。批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。我们进一步证明了该模型在(Li,Fe)Ohfese和cetyltrimethyl铵(CTA +) - 钙化(CTA)0.5 SNSE 2超导体中的有效性,突出了其广泛的适用性。这项工作提供了对大量2D超导性的有价值的见解,并建立了扩展的2D Tinkham模型,用于定量提取插入的分层超导体中的固有超导性能,尤其是那些表现出明显的层间未对准的超导体。†这些作者也同样贡献。*联系作者:dong.li.hs@riken.jp **联系作者:dong@iphy.ac.cn
在LA 3 Ni 2 O 7(LNO)中发现高t C超导性(SC)引起了极大的关注。以前,有人提出NI-3 D Z 2轨道对于实现LNO中的高t c sc至关重要。其中预制的库珀对通过与3 d x 2 -y 2轨道的杂交获得相干性,形成SC。但是,我们持有不同的观点,即层间配对S -Wave SC是由3 d x 2 -y 2轨道诱导的,这是由强层间层互动相互作用驱动的。为了包括两个e g轨道的效果,我们建立了一个两轨双层t -j模型。我们的计算表明,由于无双重占用限制,3 d x 2-y 2频段和3 d z 2键带的分别被大约2和10的倍数,这与最近角度分辨的光发射镜头测量值一致。因此,由于难以发展相干性,因此在3 d z 2轨道中几乎无法诱导高温SC。但是,在逼真的相互作用强度下,3 d x 2 -y 2轨道可以很容易地实现。带有电子掺杂,3 d z 2个带逐渐潜入费米水平以下,但t c继续增强,这表明LNO中的高t c s s c s s s c c s s no不需要。带有孔掺杂,T C最初掉落然后上升,并伴随着从BCS到BEC型超导体过渡的交叉。
通过2D材料的远程外观远处为研究和应用打开了新的机会,克服了经典外观的某些局限性,并允许创建独立层。然而,将石墨烯作为金属氧化物远程外观的2D中间剂具有挑战性,尤其是当通过脉冲激光沉积(PLD)进行时。石墨烯层可以很容易地在通常施加的高氧气压力下氧化,并且血浆羽流的高度动力学颗粒的影响会导致严重的损害。在这项研究中,解决了这两个方面:氩气被作为惰性背景气体引入,以避免氧化并减少血浆物种对石墨烯的动力学影响。激光斑点尺寸被最小化以控制等离子体的羽流和颗粒通量。作为模型系统,钛酸锶(Sto)是在石墨烯缓冲的STO单晶上生长的准同性恋。拉曼光谱法以评估石墨烯层的2 d,g和d带指纹,并评估沉积后层中层的缺陷结构。我们的结果证明,通过降低激光斑点大小和使用高氩增压提供了对生长动力学的控制,这提供了一种关键策略,以保存PLD期间缺陷密度低的石墨烯,同时允许结构相干氧化物层的一层生长。该策略可能会概括为许多复杂氧化物的PLD远程外延,为使用广泛可访问的PLD工艺将2D材料与复杂氧化物集成开辟了道路。
由于电解质很难进入纳米多孔还原石墨烯(RGO)电极的纳米构固定空间,因此实现了这些设备的最佳电化学性能是一个挑战。在这项工作中,在电压控制的纳米孔RGO电极的电化学激活过程中研究了界面州现象的动力学,该电化学激活在人体能力和电化学障碍方面导致电化学性能增强。原位/操作表征技术用于揭示激活过程中引入的不可逆材料变化的动力学,包括纳米孔内的离子差异和水的构成,以及含氧组的还原和RGO Interlayer距离的减少。此外,操作技术用于揭示RGO电极的复杂极化依赖性动态响应的起源。研究表明,石墨烯基平面中剩余官能团的可逆质子化/去质子化和阳离子电吸附/解吸过程控制纳米孔RGO电极的假能性能。这项工作为纳米多孔RGO电极的电化学循环过程中发生的表面化学,离子实现和脱染过程之间的复杂相互作用带来了新的了解,从而为设计基于Nanoporor rgo的高强度电极设计了新的见解。
摘要:二维共轭金属有机框架(2D C-MOF)由于其(半)的导电性能而吸引了对电子的兴趣日益增加。电荷 - 中立2D C-MOF也具有持久的有机自由基,可以看作是自旋浓缩阵列,为Spintronics提供了新的机会。然而,层堆积的2D C-MOF的相邻分子之间的强π相互作用歼灭了活跃的自旋中心,并显着加速了自旋松弛,严重限制了它们作为自旋量子的潜力。在此,我们通过控制层间堆叠来报告2D C -MOF中电荷传输和自旋动力学的精确调整。在共轭配体上引入了笨重的侧基,从而使2D C -MOFS层从锯齿状的堆叠到交错的堆叠量显着脱位,从而在空间上削弱了层间相互作用。因此,2D C -MOF的电导率降低了六个数量级,而旋转密度则增加了30倍以上,并且自旋晶格松弛时间(t 1)增加到〜60 µs,从而使旋转宽松的参考2D C -MOF变得越来越快地占据了旋转的良好。自旋动力学结果还表明,无旋转极化对或双极在这2D C -MOF的电荷传输中起关键作用。我们的策略提供了一种自下而上的方法,可以在2D C-MOF中扩增自旋动力学,从而为开发基于MOF的Spintronics开辟了途径。
