摘要:已经开发了基于诱导多能干细胞(IPSC)衍生的运动神经元(MN)的大量体外模型,以研究运动神经元疾病(MNDS)选择性MN变性的潜在原因。例如,球体是简单的3D模型,具有大量生成的潜力,可以在不同的测定中使用。在这项研究中,我们生成了MN球体,并开发了一种工作流以分析它们。开始,通过开发管道来获得其大小和形状的测量,可以实现球体的形态学填充。接下来,我们分别通过QPCR和组织清除样品的免疫细胞化学来确认不同Mn标记在转录本和蛋白质水平上的表达。最后,我们评估了Mn球体使用微电极阵列方法以动作电位和突发形式显示功能活动的能力。尽管大多数细胞都表现出MN身份,但我们还表征了其他细胞类型的存在,即中间神经元和少突胶质细胞,它们与MN共享相同的神经祖细胞池。总而言之,我们成功地开发了一种MN 3D模型,并优化了可以应用其形态学,基因表达,蛋白质和功能性培养的工作流,随着时间的流逝。
兴奋性/抑制(E/I)平衡是指兴奋性神经递质(例如谷氨酸)之间的动态调节,这些兴奋性神经递质促进神经元释放和抑制性神经递质,例如抑制神经元的γ-氨基抑制剂(GABA),抑制神经元的活性[1]。e/i平衡是几种大脑功能的基础,包括感觉处理,学习,记忆和认知。对E/I信号的精确调节可确保神经元有效地通信而不会过度兴奋或抑制,这可能导致网络不稳定性或功能障碍。E/I平衡中的破坏与各种神经和精神疾病有关[2]。例如,在癫痫中,过量的兴奋活动或抑制性控制的不足会导致不受控制的神经元发射,从而导致癫痫发作[3]。 在自闭症谱系障碍(ASD)中,E/I平衡的改变被认为有助于感觉处理异常和认知缺陷[2]。 精神分裂症是E/I不平衡的另一个条件,具有破坏的抑制性信号传导,尤其是涉及GABA能中间神经元,潜在的潜在的认知和感知障碍[4]。 在麻醉期间,E/I平衡也受到深远的影响。 麻醉剂通常会增强抑制性神经传递和/或减少兴奋性神经传递,以诱导可逆的意识和感觉丧失[5]。 例如,一种常用麻醉剂的氯胺酮充当NMDA受体拮抗剂,导致兴奋性信号传导和皮质和皮质下神经活性的调节降低[6]。 同样,例如,在癫痫中,过量的兴奋活动或抑制性控制的不足会导致不受控制的神经元发射,从而导致癫痫发作[3]。在自闭症谱系障碍(ASD)中,E/I平衡的改变被认为有助于感觉处理异常和认知缺陷[2]。精神分裂症是E/I不平衡的另一个条件,具有破坏的抑制性信号传导,尤其是涉及GABA能中间神经元,潜在的潜在的认知和感知障碍[4]。在麻醉期间,E/I平衡也受到深远的影响。麻醉剂通常会增强抑制性神经传递和/或减少兴奋性神经传递,以诱导可逆的意识和感觉丧失[5]。例如,一种常用麻醉剂的氯胺酮充当NMDA受体拮抗剂,导致兴奋性信号传导和皮质和皮质下神经活性的调节降低[6]。同样,
已经提出了几种神经机制来解释认知能力的形成,这些认知能力是通过出生后与身体和社会文化环境的互动形成的。在这里,我们介绍了一个三级信息处理和认知能力获取的计算模型。我们提出了构建这些级别的最低架构要求,以及参数如何影响它们的性能和关系。第一个感觉运动水平处理局部无意识处理,这里是在视觉分类任务期间。第二级或认知水平通过长距离连接全局整合来自多个本地处理器的信息,并以全局但仍然无意识的方式合成它。第三级也是认知最高的级别,全局和有意识地处理信息。它基于全局神经工作空间 (GNW) 理论,被称为意识水平。我们分别使用跟踪和延迟条件任务来挑战第二级和第三级。结果首先强调了通过在局部和全局尺度上选择和稳定突触来进行表观遗传的必要性,以使网络能够解决前两个任务。在全局尺度上,尽管感知和奖励之间存在时间延迟,但多巴胺似乎对于正确提供信用分配必不可少。在第三层,在没有感官输入的情况下,中间神经元的存在对于在 GNW 内维持自我维持的表征必不可少。最后,虽然平衡的自发内在活动促进了局部和全局尺度上的表观遗传,但平衡的兴奋/抑制比率可以提高性能。我们从神经发育和人工智能两个方面讨论了该模型的合理性。
不清楚。另一种策略是探索小鼠脑和人脑之间的相似性(Szegedi等,2020)。在单个神经元类型及其连接水平上,大脑由重复的构件组成,称为电路基序,这些基序包含互连兴奋性和抑制性神经元的组合。在自闭症和癫痫的小鼠模型中进行了许多研究,发现这些疾病与大脑的激发和抑制之间缺乏平衡有关(Nelson和Valakh,2015年)。在小鼠中已经对抑制性神经元的两种关键类型进行了很好的研究:白蛋白(PVALB)细胞,它们会迅速相关地靶向神经元,而生长抑制素(SST)细胞,这些细胞需要更长的时间(图1B; Blackman等,2013)。再说一次,这只是在小鼠中,还是在人类中也发现了具有PVALB或SST细胞的基序?现在,在Elife,Mean-Hwan Kim及其同事(总部位于艾伦脑科学研究所,华盛顿大学和瑞典神经科学研究所),报告说,人类和小鼠的抑制性电路主题非常相似(Kim等,2023)。建立了他们使用高通量转录组分析的最新工作(Bakken等,2021),研究人员比较了小鼠和人类皮质的细胞转录组。这揭示了超过70个基因,这些基因富含PVALB和SST细胞。这些基因中的许多基因与神经元之间的连接有关,这表明它们确定了这两种细胞类型的突触的特性。看到的类似细胞类型特异性遗传学
GABA 能神经元是皮质网络中的关键回路元素。尽管越来越多的证据表明抑制细胞在外侧 (LA) 和基底 (BA) 杏仁核功能中发挥着关键作用,但这些杏仁核中的 GABA 能神经元数量及其不同类型的比例尚未确定。使用无偏立体学,我们发现雄性和雌性小鼠的 BA (22%) 中的 GABA 能神经元比例明显高于 LA (16%)。无论性别,左右半球之间均无差异。此外,我们还评估了两个杏仁核中主要抑制细胞类型的比例。使用转基因小鼠和病毒策略可视化抑制细胞并结合免疫细胞化学,我们估计以下细胞类型共同构成了 LA 和 BA 中的绝大多数 GABA 能细胞:轴突-轴突细胞(5.5%-6%)、表达小清蛋白(17%-20%)或胆囊收缩素(7%-9%)的篮状细胞、表达生长抑素的树突靶向抑制细胞(10%-16%)、含有 NPY 的神经胶质细胞(14%-15%)、表达 VIP 和/或钙网膜蛋白的中间神经元选择性中间神经元(29%-38%)以及表达生长抑素和神经元一氧化氮合酶的 GABA 能投射神经元(5.5%-8%)。我们的结果表明,这些杏仁核包含在其他皮质区域发现的所有主要 GABA 能神经元类型。此外,我们的数据为未来的研究提供了重要的参考,旨在揭示在不同病理条件下通常观察到的 GABA 能细胞数量和抑制细胞类型的变化,并模拟健康和疾病状态下杏仁核网络的功能。
小白蛋白阳性 γ -氨基丁酸 (GABA) 能中间神经元与锥体神经元之间的突触相互作用会引起皮质伽马振荡,而这种振荡在精神分裂症中是异常的。这些皮质伽马振荡可以通过伽马波段听觉稳态反应 (ASSR) 来指示,ASSR 是一种强大的脑电图 (EEG) 生物标记,越来越多地用于推动精神分裂症和其他相关脑部疾病的新疗法的开发。尽管 ASSR 很有前景,但 ASSR 的神经基础尚未被确定。本研究调查了健康受试者和精神分裂症患者 ASSR 的潜在来源。在本研究中,开发了一种非侵入性地表征源位置的新方法,并将其应用于从接受 ASSR 测试的 293 名健康受试者和 427 名精神分裂症患者获得的 EEG 记录。结果显示,在健康受试者和精神分裂症患者中,颞叶和额叶源均存在分布式网络。在这两组中,主要的 ASSR 源均位于右侧颞上皮层和眶额皮层。除了这些区域的正常活动外,精神分裂症患者的左侧颞上皮层、眶额皮层和左侧额上皮层的伽马波段 ASSR 源偶极子密度 (ITC > 0.25) 显著降低。总之,颞叶和额叶大脑区域的分布式网络支持伽马相位同步。我们证明,无法对简单的 40 Hz 刺激产生一致的生理反应反映了精神分裂症患者网络功能的混乱。未来需要进行转化研究,以更全面地了解精神分裂症患者伽马波段 ASSR 网络异常的神经机制。
摘要 乙酰胆碱 (ACh) 是周围神经系统 (PNS) 和中枢神经系统 (CNS) 的重要神经递质,它通过烟碱型乙酰胆碱受体 (nAChR) 和毒蕈碱型乙酰胆碱受体 (mAChR) 发出信号。在这里,我们探讨了三个 nAChR 亚基 chrna3 、 chrnb4 和 chrna5 的表达模式,它们位于进化保守的簇中。在多种脊椎动物中,这种紧密的基因组定位可能表明共同功能和/或共同表达。通过新型转基因斑马鱼系,我们观察到 PNS 和 CNS 内广泛表达。在 PNS 中,我们观察到 chrna3 tdTomato 、chrnb4 eGFP 和 chrna5 tdTomato 在肠道神经系统中的表达; chrna5 tdTomato 和 chrnb4 eGFP 位于侧线的感觉神经节中;而 chrnb4 eGFP 位于耳朵中。在中枢神经系统中,chrnb4 eGFP 和 chrna5 tdTomato 的表达出现在视网膜中,这三种基因均在大脑的不同区域表达,其中一部分 chrna3 tdTomato 和 chrnb4 eGFP 细胞被发现是投射到侧线的抑制性传出神经元。在脊髓内,我们在运动网络内识别出表达 chrna3 tdTomato、chrnb4 eGFP 和 chrna5 tdTomato 的不同神经元群,包括表达 dmrt3a 的中间神经元和表达 mnx1 的运动神经元。值得注意的是,每个半节段的三到四个初级运动神经元均被 chrna3 tdTomato 和 chrnb4 eGFP 标记。有趣的是,我们在每个半节段中发现了一个 sl 型次级运动神经元,该神经元强烈表达 chrna5 tdTomato 并同时表达 chrnb4 eGFP。这些转基因系为 nAChRs 在运动网络中的潜在作用提供了见解,并为探索它们在整个神经系统一系列组织中尼古丁暴露和成瘾的作用开辟了途径。
g-band振荡(GBO)是由快速加速的中间神经元(FSI)生成的,对于认知功能至关重要。异常,并且与认知障碍密切相关。但是,基本机制知之甚少。研究GBO在离体制备中的GBO由于需求量很高而具有挑战性,并且需要连续的牛至递送到组织。结果,通常会在非常年轻的动物或最大化氧气供应但妥协空间分辨率的实验设置中研究GBO。因此,对GBO在不同的大脑结构内部和不同动物中的脑组织之间的相互作用有一个深刻的了解。为了解决这些局限性,我们开发了一种新的方法,用于使用60频道的,穿孔的微电极阵列(PMEAS)研究成熟动物的离体海马切片中的GBO。pmeas增强了电生理记录中的氧气递送并增加了空间分辨率,从而实现了离散大脑结构内GBO同步的全面分析。我们发现,在海马内的神经途径上横断了Schaffer侧支,损害了CA1和CA3子场之间的GBO相干性。此外,我们通过研究表现出抑制性突触功能障碍的ANK3突变小鼠模型中的GBO相干性来验证我们的方法。我们发现,在这些突变小鼠的CA3子场中,GBO相干性保持完整,但在CA1子场内和之间受损。总体而言,我们的方法具有表征Animal模型的离体脑部切片中GBO的巨大潜力,从而增强了我们对精神疾病中网络功能障碍的理解。
- Principal Investigator NOTICE FINALIZED 2018 Research, Young Researchers' Project (GR–2018–12367290) "Neuronal Reprogramming in Schizophrenia: A Translational Approach to UNVEL SLEEP ENDOPHENOTYPES" Institutional recipient Lombardy Region - Directorate General Health, Partner Unit at the Department of Neuroscience and Mental Health of Foundation of Foundation of Foundation IRCCS CA'GRANDA, HOSPITAL MAGGIORE PISA大学生物学系的Policlinico和神经干细胞实验室。 以45万欧元的总预算资助。 - 首席调查员部门呼叫第2行 - 具有“精神分裂症项目的GABA能实习功能障碍:从睡眠内生类型到IPSC衍生的疾病建模”(Serene:精神分裂症重编程神经元电生理学)。 以预算为8,416欧元(将额外捐款分配到第一名)。 - 首席研究员部门部门研究支持计划 - 第2行“机构活动的年度设备”与Parvalbumin-阳性项目Gabergic Internons的精神分裂症:从皮质电生理学到细胞重编程。 以预算为5,250欧元的资金。 - 在AIFA-2016-2016- 02364923中的操作单元AIFA 2016的头部评估抑郁症患者的Vortioxetine Vortioxetine与SSRI的安全性和效应层面:在布拉格马性,多中心,开放式,平行 - 平行,平行,平行,随机试验,随机试验,版本3,055/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/1。- Principal Investigator NOTICE FINALIZED 2018 Research, Young Researchers' Project (GR–2018–12367290) "Neuronal Reprogramming in Schizophrenia: A Translational Approach to UNVEL SLEEP ENDOPHENOTYPES" Institutional recipient Lombardy Region - Directorate General Health, Partner Unit at the Department of Neuroscience and Mental Health of Foundation of Foundation of Foundation IRCCS CA'GRANDA, HOSPITAL MAGGIORE PISA大学生物学系的Policlinico和神经干细胞实验室。以45万欧元的总预算资助。- 首席调查员部门呼叫第2行 - 具有“精神分裂症项目的GABA能实习功能障碍:从睡眠内生类型到IPSC衍生的疾病建模”(Serene:精神分裂症重编程神经元电生理学)。以预算为8,416欧元(将额外捐款分配到第一名)。- 首席研究员部门部门研究支持计划 - 第2行“机构活动的年度设备”与Parvalbumin-阳性项目Gabergic Internons的精神分裂症:从皮质电生理学到细胞重编程。以预算为5,250欧元的资金。- 在AIFA-2016-2016- 02364923中的操作单元AIFA 2016的头部评估抑郁症患者的Vortioxetine Vortioxetine与SSRI的安全性和效应层面:在布拉格马性,多中心,开放式,平行 - 平行,平行,平行,随机试验,随机试验,版本3,055/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/1。Vespa Study: Vortioxetine in the Elderly vs. SSRIS: A Pragmatic Assessment (Principal Investigator Prof. Corrado Barbui, Unit of Clinical Psychopharmacology - WHO Center for Mental Health Research; Department of Public Health and Community Medicine; Psychiatry Section; University
在C.892C> T(P.ARG298TRP)上,转录阻遏核与伏隔核核的错义突变在染色体19上导致严重的神经发育延迟(Schoch等,2017)。为了建模这种疾病,我们用同源突变(NACC1 +/R284W)设计了第一个小鼠模型,并检查了E17.5到8个月的小鼠。两个性别的体重增加,癫痫样排放量延迟,并改变了皮质脑电图,行为癫痫发作和明显的后肢紧握的功率谱分布;女性在一个开放式场上显示thigmotaxis。在皮质中,NACC1长同工型(含有突变)从3个月增加到6个月,而短的同工型(在人类中不存在,在小鼠中缺乏AAR284),从产后日开始稳步上升(p)7。核NaCC1免疫反应性在皮质锥体神经元和含有中间神经元的Parval-bumin的核NACC1免疫反应性升高,而在星形胶质细胞或寡头胶质细胞核中不增加。星形胶质细胞过程中的神经胶质纯酸性蛋白质染色减少。P14突变小鼠皮层的 RNA-SEQ揭示了1,000多种差异表达的基因(DEGS)。 神经胶质文字被下调并上调突触基因。 来自上调DEG的顶级基因本体术语与结合后和离子通道功能有关,而下调的DEG富含与代谢功能,线粒体和核糖的术语相关的术语。 突触蛋白的水平已更改,但突触接触的数量和长度在3个月时没有改变。 纯合性恶化了一些表型,包括产后存活,体重增加延迟和核NACC1的增加。RNA-SEQ揭示了1,000多种差异表达的基因(DEGS)。神经胶质文字被下调并上调突触基因。来自上调DEG的顶级基因本体术语与结合后和离子通道功能有关,而下调的DEG富含与代谢功能,线粒体和核糖的术语相关的术语。突触蛋白的水平已更改,但突触接触的数量和长度在3个月时没有改变。纯合性恶化了一些表型,包括产后存活,体重增加延迟和核NACC1的增加。该小鼠模型模拟了一种罕见的自闭症形式,对于评估病理生理学和治疗干预靶标的是必不可少的。
