Garr,E.,Padovan-Hernandez,Y.,Janak,P.H。,&Delamater,A.R。 (2021)。 维持目标指导的控制,并过度训练比率时间表。 学习与记忆,28,435-439。 doi.org/10.1101/lm.053472.121 Cheng,Y.,Xie,X.,Lu,J.,Gangal,H. (2021)。 在背纹状体中轨道纹状体长期增强的光遗传学诱导引起了大鼠持续减少寻求酒精的行为。 Neuropharmacology,191,108560。doi.org/10.1016/j.neuropharm.2021.108560 Garr,E。&Delamater,A.R。 (2020)。 背纹状体中的化学抑制作用揭示了直接和间接途径控制作用测序的区域特异性。 学习与记忆的神经生物学,169,107169。doi.org/10.1016/j.nlm.2020.107169 Garr,E.,Bushra,B.,Tu,N。,&Delamater,A.R。 (2020)。 对间隔时间表的目标指导控制不取决于动作结果相关性。 实验心理学杂志:动物学习与认知,46(1),47-64。 doi.org/10.1037/xan0000229 Garr,E。(2019)。 基底神经节对动作序列学习和性能的贡献。 神经科学和生物行为评论,107,279-295。 doi.org/10.1016/j.neubiorev.2019.09.09.017 Garr,E。&Delamater,A.R。 (2019)。 在动作序列任务中探索动作,习惯和自动性之间的关系。 学习与记忆,26(4),128-132。 doi.org/10.1101/lm.048645.118 Garr,E。(2017)。 (2016)。Garr,E.,Padovan-Hernandez,Y.,Janak,P.H。,&Delamater,A.R。(2021)。维持目标指导的控制,并过度训练比率时间表。学习与记忆,28,435-439。 doi.org/10.1101/lm.053472.121 Cheng,Y.,Xie,X.,Lu,J.,Gangal,H.(2021)。在背纹状体中轨道纹状体长期增强的光遗传学诱导引起了大鼠持续减少寻求酒精的行为。Neuropharmacology,191,108560。doi.org/10.1016/j.neuropharm.2021.108560 Garr,E。&Delamater,A.R。(2020)。背纹状体中的化学抑制作用揭示了直接和间接途径控制作用测序的区域特异性。学习与记忆的神经生物学,169,107169。doi.org/10.1016/j.nlm.2020.107169 Garr,E.,Bushra,B.,Tu,N。,&Delamater,A.R。(2020)。对间隔时间表的目标指导控制不取决于动作结果相关性。实验心理学杂志:动物学习与认知,46(1),47-64。doi.org/10.1037/xan0000229 Garr,E。(2019)。基底神经节对动作序列学习和性能的贡献。神经科学和生物行为评论,107,279-295。doi.org/10.1016/j.neubiorev.2019.09.09.017 Garr,E。&Delamater,A.R。(2019)。在动作序列任务中探索动作,习惯和自动性之间的关系。学习与记忆,26(4),128-132。doi.org/10.1101/lm.048645.118 Garr,E。(2017)。(2016)。纹状体中的录音可以告诉我们有关关联学习的知识?《神经科学杂志》,37(50),12091-12093。doi.org/10.1523/jneurosci.2770-17.2017 Delamater,A.R.,Garr,E.,Lawrence,S。,&Whitlow,J.W。元素,配置和场合设置机制在双条件和图案歧视中。行为过程,137,40-52。doi.org/10.1016/j.beproc.2016.10.013 Garr,E。(2016)。背侧纹状体中音调性中间神经元的异质反应。神经科学杂志,36(12),3412-3413。doi.org/10.1523/JNEUROSCI.0099-16.2016 TALKS 2025 University of Rochester, Del Monte Institute for Neuroscience, Rochester, NY 2024 University of Connecticut, Department of Psychological Sciences, Storrs, CT 2023 Harvard University, Center for Brain Science, Cambridge, MA 2023 International Conference on Learning and Memory, Huntington Beach, CA 2022巴尔的摩大脑系列,巴尔的摩,马里兰州2020年南京医科大学,蒂亚尤恩云药学研讨会,虚拟2019波士顿大学,波士顿大学,系统神经科学中心,波士顿,马萨诸塞州马萨诸塞州,2019年耶鲁大学,纽黑文,纽黑文,CT 2017,2017年Gregynog Assistional Issergiative Inkostice Ankostomessim,Easorlogical,Eastern,Eastern,MAA,MA,MAA,HA,HA,bot,bot boter。费城,宾夕法尼亚州会议海报2024戈登研究会议:新罕布什尔州沃特维尔谷的认知神经生物学。2023神经科学协会,华盛顿特区2023年戈登研究会议:西班牙巴塞罗那儿茶酚胺。
神经薄缠结是与AD相关的病理过程(Yokoyama等,2022)。这些病理特征有可能破坏突触和神经元活性,从而导致各种大脑区域的网络异常(Casula等,2022; Luo等,2023; Pless等,2023)。在AD患者的大脑中,已经检测到了各种神经生理特征,包括Preduneus Cortex(Casula等,2023)中的过度兴奋性和小脑皮质可塑性机制的损害(Di Lorenzo等人,2020年)。这些异常的神经活动可能导致AD中的神经元网络功能障碍,从而导致认知障碍。海马是用于记忆编码,存储和检索的关键大脑区域,是AD病理学影响的最早区域之一(Gillespie等,2016; Caccavano等,2020)。研究人员在神经振荡中检测到与在AD患者和动物模型的海马区域中使用脑电图或局部领域(LFP)记录(LOUX和UHLHAAS,2014; MILLER等,2018; JAFARI; JAFARI; JAFARI和KOLB)的20220; JAFARI和KOLB的2020;进一步探讨了它们在AD病理学背景下的作用,这揭示了在AD治疗中进行干预的潜在机会(Chan等,2021; Traikapi和Konstantinou,2021)。海马含有重要的中间神经元人群,在驱动神经元同步中起着至关重要的作用(Da Crugz等,2020; He He等,2021)。γ振荡与动物和人类的记忆和认知有关,并且可能在各种频率范围内都存在功能区别(Moby和Colgin,2018年)。特定的,缓慢的γ振荡(25 Hz -50 Hz)被认为可以增强海马内的记忆检索过程(Zheng等,2016),随着涉及较高记忆需求的任务中的慢速伽马活性增加了(Rangel等人,2016年)。海马锋利波纹波(SWR)在支持记忆合并和重播中起着重要作用(Buzsaki,2015; Katsuki等,2022)。SWR的破坏会损害记忆性能(Aleman-Zapata等,2022),而通过光遗传学刺激延长SWR的持续时间可改善迷宫任务期间大鼠的记忆力(Fernández-Ruiz等人,2019年)。研究表明,海马γ振荡和AD中的SWR缺陷(Hollnagel等,2016; Klein等,2016; Witton等,2016; Benthem等,2020)。神经刺激是一种神经调节的方法,涉及将刺激(例如电气,磁性,光学和超声)传递到选定的大脑区域,以调节局部和网络范围内的神经元活性(Yuan等,2020)。经颅磁刺激刺激(TMA)是一种非侵入性工具的创新形式,可以使用低强度集中的超声刺激静态磁场内特定的大脑区域(Yuan and Chen,2016; Wang等,2019)。在2003年,诺顿提出了在静态磁场中使用超声刺激的想法(Norton,2003)。由脑组织内部超声引起的离子颗粒的运动将在静态磁场下形成洛伦兹力,而TMA允许磁性声音电场和超声波的联合作用(Wang等,2016; Yuan等,2016; Yuan等,2016)。值得注意的是,即使在深脑区域,TMA也可以为由于
邓幼平博士 - 综合补充医学系 循环脂质和miRNA标记物在乳腺钼靶X线异常女性乳腺癌早期检测中的应用 (CA230514) 大多数乳腺钼靶X线异常结果均为假阳性,需要活检和其他影像学检查。邓博士的研究将识别循环脂质和miRNA标记物,并将其用作诊断工具,以减少不必要的后续检查。他和他的团队正在测试脂质和miRNA的比例,以区分早期乳腺癌和良性样本,准确率超过90%。他们的研究结果将对乳腺癌的早期检测具有重要意义。 Claire Townsend Ing,公共卫生博士 - 夏威夷原住民健康部 PILI 'ĀINA 项目 (HL168858) 在这项为期五年的研究中,Townsend-Ing 博士及其团队将调整并测试 PILI 'Āina 项目。PILI 'Āina 项目是他们开发的一项循证多层次干预方法,旨在促进超重/肥胖的夏威夷原住民成年人的健康饮食、减肥和心血管健康。该团队将与社区成员合作,在夏威夷原住民家园推广传统饮食和社会凝聚力,以降低饮食相关疾病的风险因素,并改善社区中普遍存在的心脏代谢疾病的自我管理。 Marjorie K. Mau,医学博士(多位首席研究员)——夏威夷原住民健康部 I KUA NA'U“让我实现您的遗愿”夏威夷原住民长者预先照护计划(编号 NR018400,授予塔夫茨医学中心)尽管预先照护计划 (ACP) 服务在医疗保健系统中迅速扩展,但夏威夷原住民的 ACP 率始终微乎其微,姑息治疗和临终关怀服务的使用率也较低。为了解决这些问题,我们的多学科社区和研究小组携手合作,制作了 I kua na'u“让我实现您的遗愿”ACP 视频干预项目。 Alika Maunakea 博士 - 解剖学、生物化学和生理学系,《土著社区糖尿病风险免疫表观遗传特征的社会生态决定因素》(MD016593) 我们提出一个假设:社会环境决定着表观基因组格局和肠道菌群组成,而这些因素又调节着糖尿病背后的炎症和代谢途径。我们将利用一组新的非居民健康保险计划 (NHPI) 及其社会网络,采用横断面研究设计,探讨其与邻里和人际层面社会因素的关联,并探索该特征可能构成先天性糖尿病相关特征的机制基础,以确定该特征在多大程度上可以前瞻性地预测糖尿病的结局。 Jesse B. Owens 博士 - 解剖学、生物化学和生理学系 定向进化序列特异性靶向技术,用于将治疗基因递送至人类基因组 (EB031124) 目前插入基因的工具存在一些缺点,例如免疫反应、基因大小有限、并且不受控制的插入可能导致癌症。该项目旨在开发一种新工具,能够将灵活大小的治疗基因插入人类基因组中的安全位置。将测试血友病 B 的治疗方法,以展示这种新技术的治疗相关应用。Matthew W. Pitts,博士 - 细胞和分子生物学系评估甲基汞和硒对出生后大脑发育和精神疾病风险的联合影响(ES035851)Pitts 博士和他的团队正在进行一项基础研究,以了解青少年时期长期低汞暴露可能导致精神疾病发展的分子和细胞机制。他们假设汞会抑制硒蛋白抵御大脑氧化应激的能力,特别是在快速放电、表达小清蛋白的中间神经元(PVI)中。在系统层面上,由此产生的大脑兴奋-抑制失衡可能导致行为改变和精神问题风险增加。
连接的PS1突变总是会导致促进神经系统疾病的研究中心增加,特别是淀粉样蛋白生成物种A 42 Brigham and妇女医院(Duff等,1996; Jarrett等,1993; Scheuner et al。据推测,PS1本身可能具有哈佛医学院 - 分泌酶活性(Wolfe等,1999),这是马萨诸塞州波士顿02115的概念,由PS1直接结合,由pseptidomomi -3 Mind/Brain Mind/Brain Institute Metic Institute Metic -Scretase -Secretase -Secretase -Secretase -Secretase -Secretase -Secretase -Secretase -Secretase -Secretase -Secretors抑制器(Esler等人)(Esler et al li al li an li an li and li。这些发现提出了马里兰州21218 PS1的可能性,可能代表了抗敏感的脑和认知科学系的有吸引力的目标。学习和记忆中心PS1作为马萨诸塞州AD的治疗目标的可行性非常取决于降低PS1功能剑桥,马萨诸塞州02138在成人大脑中的影响。由于PS1 / 5梅奥诊所杰克逊维尔小鼠的围产期致死性,但先前关于佛罗里达州杰克逊维尔的应用程序处理的研究32224 32224 PS1的缺乏依赖于培养的神经元6 Howard Hughes Medical Institute衍生自胚胎PS1 /大脑。除了神经生物学中心和行为中心在应用程序处理中的作用外,我们先前对哥伦比亚大学PS1 /小鼠的研究表明,PS1在大脑发育过程中发挥了纽约10032的多效性效应,包括调节神经发生和缺口信号(Handler et al。,2000; Shen等,1997)。此外,Notch信号被限制在产后前脑。在没有PS1的情况下,神经前代汇总细胞过早地分化为有丝分裂后的神经元,导致祖细胞的早期消耗,我们开发了有条件的presenilin-1(ps1),随后是一个较小的神经元种群(han-oketut小鼠(CKO),在PS1 IS INARTACTIVINID中,Dive and。如小鼠所示,在PS1 /胚胎脑中诱导的PS1 CKO是可行的,并且没有明显的异常。降低了HES5表达并增加了DLL1表达的淀粉样蛋白pre-的羧基末端片段(Handler等,2000)。PS1似乎通过调节CKO小鼠的细胞内皮层的产生,而Notch1的-Amyloid结构域(De Strooper等,1999; Song peptides降低了。Notch Downstream等,1999)的表达在下游效应基因的晚期转录中不受影响,该基因不受影响,该基因不受影响。CKO皮层。尽管基础突触传播,但由于PS1 /小鼠的围产期致死性,PS1在成年大脑中的作用仍然未知长期增强和长期抑郁。re-hippocampal区域Ca1突触正常,PS1恰当地,秀丽隐杆线虫中PS1同源物中的突变,CKO小鼠在长SEL-12和HOP-1中表现出细微但显着的缺陷,导致缺陷导致缺陷术语空间记忆。缺陷而不会影响Notch向下的表达,以研究PS1失活对App Stream基因的影响。这些结果表明,在成年大脑皮层中PS1功能失活的神经形态中,两个胆碱能中间神经元,表明参与导致PS1在神经元功能中的一代和微妙的认知降低(Wittenburg等,2000)。处理,Notch信号通路以及成人大脑中的突触和认知功能,我们采用了CRE/LOXP重组系统来开发PS1条件敲除(CKO)小鼠。使用这种策略,Presenilin-1(PS1)的突变是最常见的PS1表达,在早期发作家族性阿尔茨海默氏病(FAD)的皮质原因中逐渐消除。从第三周开始的CKO小鼠开始。在-Amloid(A)肽的累积和沉积中,CKO小鼠的成年大脑皮层,大脑皮层中40的水平是早期和中心过程,而AD病原体的水平差异降低。A肽是生成App c末端片段(CTF)与淀粉样蛋白前体蛋白(APP)不同的,这是由于皱纹而导致的。令人惊讶的是,在CKO小鼠的皮质中未填充了凹槽下顺序的蛋白水解裂解的表达。Hippocampal 7信函中的基础突触传播和突触可塑性:jshen@rics.bwh.harvard.edu
