(08-02-2024) - 今天,我非常自豪地站在你们面前,讨论印度在太空和国防进步方面的非凡历程。随着我们大步迈向未来,印度不仅在探索天空,而且正在征服天空。印度对科学探索、技术创新和国家安全的承诺,已将其推向与进步和卓越同义的国际联盟。 - DefSAT 2024 正在引领我们的国家进入技术实力和战略意义的新时代。我衷心感谢 SIA-India 和国防智库 CENJOWS、CLAWS、CAPS 和 NMF 组织这次盛大的聚会。印度处于变革叙事的前沿,正在塑造其在国防和太空技术领域的光明未来。 - 从 1975 年发射的第一颗卫星“Aryabhatt”到最近的 Aditya L1(印度首次研究太阳的任务),我们的国家已经证明了我们确实是“Atma Nirbhar”。我们设计、开发和发射卫星和行星际探测器的能力表明了高水平的技术能力。它进一步有助于激励我们的年轻人为科学做出贡献,并学习 STEM(科学、技术、工程和数学)教育和研究。
摘要 光束动力推进是一种利用高能粒子束驱动航天器的空间推进系统。这项创新技术有望为未来的太空任务提供高比冲和高推力能力。光束动力推进的关键部件包括粒子加速器、传动系统和航天器推进装置。该系统通过产生和引导高能粒子束(例如电子或离子)朝向推进装置来运行。光束与推进装置的相互作用产生推力,推动航天器前进。光束动力推进具有多种优势,包括高比冲、高推力、低质量以及在各种空间环境中运行的能力。空间技术的快速进步提高了商业和私营部门的成功率,但推进技术难以克服霍曼效应。研究重点是用于深空任务的无碳电力和核技术。应对持续的挑战评论文章强调了太空探索和行星际运输的好处。关键词:光束动力推进、高能粒子、比冲、推力、粒子加速器、传动系统、航天器推进装置。
月球是研究深空等离子体和高能粒子环境的独特地点。在绕地球运行的大部分时间里,月球直接暴露在太阳风中。由于缺乏全球固有磁场和碰撞大气,太阳风和太阳高能粒子几乎不会发生任何偏转或吸收,直接撞击月球表面,与月球风化层和稀薄的月球外大气层相互作用。到达月球表面的高能粒子可能会被吸收或散射,或者通过溅射或解吸从月球风化层中移除另一个原子。银河宇宙射线也会出现同样的现象,其通量和能谱是行星际空间的典型特征。然而,在每次轨道运行的 5-6 天内,月球都会穿过地球磁层的尾部。这为现场研究地球磁尾等离子体环境以及大气从地球电离层逃逸提供了可能性,大气以重离子加速并流向尾部的形式存在。因此,月球环境为研究太阳风、宇宙射线和磁层与非磁化行星体的表面、地下和表面边界外层的相互作用提供了独特的机会。
2022 年 3 月,美国宇航局的帕克太阳探测器将完成第 11 次近距离接近太阳,穿越地球与太阳表面之间近 94% 的距离。这一历史性发现任务的目标是了解控制恒星风产生和动态的基本物理学。为了完成任务,帕克太阳探测器在近太阳空间测量粒子、电场、磁场和光子,同时忍受极热、极冷并以前所未有的速度行进。本次演讲将讨论激发帕克太阳探测器任务的科学问题,以及航天器携带的仪器,包括科罗拉多大学大气和空间物理实验室 (LASP) 对 FIELDS 仪器的贡献。帕克太阳探测器的主要科学成果将得到介绍,包括太阳双极电场的量化、新型等离子波和不稳定性发现、阿尔文表面的穿越、将太阳表面磁结构追踪到太阳风的努力以及太阳处理行星际尘埃的新突破。最后,随着帕克太阳探测器越来越接近太阳表面,本演讲将讨论其未来发展。
Konstantin Ciołkowski 和 Ary Sternfeld 为多级火箭的建造和航天器轨道的计算奠定了理论基础。Mieczysław Bekker、Werner Kirchner、Eugeniusz Lachocki、Woj- ciech Rostafiński、Stanisław Stankiewicz 和 Kazimierz Piwoński 参与了美国阿波罗计划。40 多年来,波兰科学院空间研究中心一直在实施机载卫星设备和行星际探测器项目。波兰参与苏联太空计划的顶峰是米罗斯瓦夫·赫尔马舍夫斯基的轨道飞行,波兰移民的后代卡罗尔·博布科、斯科特·帕拉津斯基、詹姆斯·帕维尔奇克、乔治·扎姆卡和克里斯托弗·弗格森作为宇航员参加了美国航天飞机飞行计划。在过去的半个世纪里,波兰科学家和工程师设计和建造了 80 多种用于太空任务的仪器,例如卡西尼-惠更斯号、火星快车号、罗塞塔号、火星好奇号探测器、火星洞察号、金星快车号、赫歇尔号、火卫一-土壤号、贝皮哥伦布号、太阳轨道器,或计划中的 Proba-3、欧几里得号、Juice、Arcus、Gamov、IMAP、雅典娜等。
此转载是对航空航天系统的动态,控制和致动的全面研究,解决了航空航天工程中的关键挑战和创新解决方案。通过整合新的方法论和实际应用,该重印展示了空间操纵器的分布式控制中的进步,无拖力卫星的状态依赖性控制,全天候立方体的混合推进系统以及用于Aero-Engine Engine和Spacecra的先进策略。探索了各种技术,包括滑动模式控制,模型预测控制,分散的LQR和自适应模糊控制,以实现轨迹跟踪,振动抑制以及集成指导和控制的强大解决方案。 此外,这种重印强调了高级材料和传感技术的变革性潜力,例如压电传感器,纤维Bragg光栅(FBG)系统和智能材料,以增强振动抑制,结构健康监测和系统可靠性。 通过理论建模,计算分析和实验验证的结合,研究提供了对航空航天系统的设计和优化的整体观点。 针对研究人员,工程师和专业人员,该重印是理解航空动态,控制和驱动技术的最新进步和未来方向的宝贵资源。探索了各种技术,包括滑动模式控制,模型预测控制,分散的LQR和自适应模糊控制,以实现轨迹跟踪,振动抑制以及集成指导和控制的强大解决方案。此外,这种重印强调了高级材料和传感技术的变革性潜力,例如压电传感器,纤维Bragg光栅(FBG)系统和智能材料,以增强振动抑制,结构健康监测和系统可靠性。通过理论建模,计算分析和实验验证的结合,研究提供了对航空航天系统的设计和优化的整体观点。针对研究人员,工程师和专业人员,该重印是理解航空动态,控制和驱动技术的最新进步和未来方向的宝贵资源。
2019:以色列赫兹利亚的IDC兼职教授。教授统计方法和数据分析。2004 - 2007年:以色列海法海法大学的兼职教授。在基本和高级操作系统中教授大学和研究生级课程。1995年:宾夕法尼亚州立学院宾夕法尼亚州立大学的博士后研究员和加利福尼亚大学圣巴巴拉分校的理论物理研究所。 高能量天体物理学研究。 1994年:访问研究员,Scuola Internazionale Superiore di Studi Avanzati(Sissa),意大利Trieste。 天体物理学和宇宙学研究。 1991 - 1995:Ph。 D.在特拉维夫大学,特拉维夫,以色列的物理学。 在等离子体物理学,辐射过程,星际介质和宇宙学的物理学方面的研究。 现代物理和物理实验室的教学课程。 1983 - 1990:B。Sc。 和M.Sc。 (summa cum Laude)在戈尔基州立大学(Gorky State University),戈基(Gorky)(现为尼兹尼·诺夫哥罗德(Nizhny Novgorod))的《无线电物理学和电子学》中。 [1984–1986:兵役。] 在血浆物理学,辐射层传播,电离层的物理学,星际/星际培养基,太阳能物理学方面的研究。1995年:宾夕法尼亚州立学院宾夕法尼亚州立大学的博士后研究员和加利福尼亚大学圣巴巴拉分校的理论物理研究所。高能量天体物理学研究。1994年:访问研究员,Scuola Internazionale Superiore di Studi Avanzati(Sissa),意大利Trieste。天体物理学和宇宙学研究。1991 - 1995:Ph。D.在特拉维夫大学,特拉维夫,以色列的物理学。在等离子体物理学,辐射过程,星际介质和宇宙学的物理学方面的研究。现代物理和物理实验室的教学课程。1983 - 1990:B。Sc。 和M.Sc。 (summa cum Laude)在戈尔基州立大学(Gorky State University),戈基(Gorky)(现为尼兹尼·诺夫哥罗德(Nizhny Novgorod))的《无线电物理学和电子学》中。 [1984–1986:兵役。] 在血浆物理学,辐射层传播,电离层的物理学,星际/星际培养基,太阳能物理学方面的研究。1983 - 1990:B。Sc。和M.Sc。(summa cum Laude)在戈尔基州立大学(Gorky State University),戈基(Gorky)(现为尼兹尼·诺夫哥罗德(Nizhny Novgorod))的《无线电物理学和电子学》中。[1984–1986:兵役。]在血浆物理学,辐射层传播,电离层的物理学,星际/星际培养基,太阳能物理学方面的研究。
● 太空飞行的动力系统理论 ● 太空飞行的机器学习和人工智能 ● 地球轨道和行星任务研究 ● 轨迹机动设计和优化 ● 行星际任务设计 ● 小行星和小天体任务 ● 轨道动力学和碎片 ● 轨道确定和估计 ● 空间态势感知(与 GNC 联合轨道) ● 地月天体动力学、任务和操作 ● 姿态动力学、确定和控制 ● 卫星星座、编队和相对运动 ● 卫星会合和近距离操作 ● 空间组装、制造和空间机器人 ● 特别会议:空间机动和物流 将根据扩展摘要的质量、工作和/或想法的原创性以及对拟议主题的预期兴趣来接受手稿。基于实验结果或当前数据或报告正在进行的任务的提交也会引起人们的兴趣。鼓励来自工业界、政府和学术界的贡献。我们还鼓励提交包含多学科研究和国际合作的论文。会议前必须提交完整的手稿。英语是会议的工作语言。更多最新信息可在会议网站 https://www.aiaa.org/scitech/ 上找到。该网站还链接到摘要和手稿提交流程,可通过演示文稿和论文链接访问。
1. 加州理工学院喷气推进实验室 简介: Gregory Allen 是加州理工学院喷气推进实验室的高级辐射效应工程师。 过去 20 年,他一直从事辐射效应领域的工作,专注于单粒子效应和技术融合。 Greg 是喷气推进实验室空间辐射中心的联合负责人,也是辐射效应组的组长。 摘要: 2021 年 4 月 19 日,在火星的耶泽罗陨石坑,Ingenuity 旋翼机在另一颗星球上进行了首次动力飞行,标志着行星际探索的一个里程碑。 它被设计为 NASA 火星 2020 任务的技术演示器和次要有效载荷,主要目的是证明在极稀薄的火星大气中实现动力飞行是可能的。 它并非用于运输,而是为了测试在火星上进行空中探索的概念。然而,火星机智号的成功展示了在火星上进行空中探索的潜力,为未来使用直升机和无人机在其他星球上进行科学探索、测绘和侦察的任务铺平了道路。我们庆祝机智号的成功,探索它实现这一目标的途径,并展望火星自主飞行的未来。
随着可机动飞行器和计划进入深空(即超越地球同步地球轨道(GEO))的飞行器越来越多,空间环境变得越来越拥挤,空间领域感知(SDA)和空间交通管理(STM)变得越来越具有挑战性。由于地球轨道卫星和地月轨道卫星之间的距离很大且观测几何有限,因此空间基地月领域感知任务的轨道设计是一个重要课题。必须为地月空间物体建立复杂的天体动力学模型,因为月球引力不能像在地球轨道飞行器动态模型中那样被忽略或视为地月物体跟踪动态模型的扰动。地月空间体系在天文学、行星际任务分级、月球探索和通信以及地球轨道插入等应用方面具有重要价值,因此越来越受到航天工业的关注 [1]。放置在地月共线拉格朗日点 L1 和 L2 的航天器可以避免地球和月球的重力井、表面环境问题以及人造和天然空间碎片。这些航天器需要较低的驻留推进剂(每秒厘米级),并且可以在 L1 和 L2 之间或地月空间和日地空间之间飞行 [2]。