在E步骤中制作的还将蒙特卡洛错误引入了优化目标。 为了减轻这些问题,我们应用随机梯度上升,并且在每个M步骤中仅采取一个梯度步骤。 我们还应用了基于动量的优化器,例如Adam [9],以跨多个M步骤汇总梯度,以抑制Monte Carlo误差的效果。 我们在模拟数据集和现实数据集上评估了我们提出的算法。 我们将稳定方法与几种基线方法进行了比较,包括基于随机变异推断的最近开发的学习技术和首先执行状态估计然后应用监督学习的混合方法。 我们的主要结果表明,稳定的表现始终优于所有其他基线,并实现与直接从地面真相轨迹中学习的性能。 总而言之,我们做出以下贡献:在E步骤中制作的还将蒙特卡洛错误引入了优化目标。为了减轻这些问题,我们应用随机梯度上升,并且在每个M步骤中仅采取一个梯度步骤。我们还应用了基于动量的优化器,例如Adam [9],以跨多个M步骤汇总梯度,以抑制Monte Carlo误差的效果。我们在模拟数据集和现实数据集上评估了我们提出的算法。我们将稳定方法与几种基线方法进行了比较,包括基于随机变异推断的最近开发的学习技术和首先执行状态估计然后应用监督学习的混合方法。我们的主要结果表明,稳定的表现始终优于所有其他基线,并实现与直接从地面真相轨迹中学习的性能。总而言之,我们做出以下贡献:
新加坡,2022 年 11 月 25 日 — 义安理工学院 (NP) 正与知名技术领导者 IBM Singapore 合作,以加强其信息技术 (IT) 文凭课程,并加强量子计算和人工智能 (AI) 领域的本地人才库。随着量子计算成为一项迅速崛起的技术,NP 正乘风破浪,成为第一个在高等教育阶段推出该领域课程的学校。作为合作的一部分,从 2023 年 4 月起,三年内,来自 NP 信息通信技术 (ICT) 学院的 500 多名学生将受益于 IBM 在量子计算、人工智能和其他新兴技术等关键技能领域开发的定制学习计划、沉浸式培训和学习活动。这将使学生掌握未来技术工作所需的宝贵数字技能。此外,学生将有机会与 IBM 量子倡导团队建立联系,该团队汇集了不断发展的量子领域的教育工作者,以共享知识和交流最佳实践,以增强教育体验。他们还将通过 AI 研讨会获得实践经验。此次合作让 IBM 深入了解了一系列行业领先的工具和产品,这些工具和产品旨在提升 NP 的技术教育组合。ICT 学生和教师都可以免费使用 IBM SkillsBuild 计划中的行业标准软件、数字证书和专业发展资源。学生还可以访问在线学习资源库和云访问权限,以进行实践实验室和 Red Hat 培训课程。目前,IBM 已赞助了 30 名来自 NP 信息通信技术学院和工程学院的学生参加 Red Hat 认证系统管理员和 Red Hat 认证工程师认证计划。NP 信息通信技术学院院长 Patrice Choong 先生表示:“高等教育机构在帮助学生跟上影响未来经济的技术进步方面发挥着不可或缺的作用。这要求与 IBM 等行业参与者进行前瞻性合作,以深化我们学生在量子计算和人工智能等新兴领域的技能,从而提高我们毕业生在未来职场中的就业能力。” IBM 新加坡总经理兼技术负责人 Colin Tan 先生表示:“我们的计划是到 2030 年为全球 3000 万人提供未来就业市场所需的技能。求职者在进入职场时往往无法看出他们入门级工作所需的关键技能。在新加坡,我们致力于与义安理工学院等学术机构携手合作,通过 IBM SkillsBuild 计划增加课程价值,以便所提供的课程能够帮助学生为就业市场做好准备。”
转化健康科学与技术研究所 (THSTI)、应用研究学会 (SAS)、韦洛尔基督教医学院 (CMC)、浦那爱德华国王纪念医院 (KEM)、斯坦福大学医学院、美国国立卫生研究院 (NIH)、美国疾病控制与预防中心 (CDC)、约翰霍普金斯大学和 PATH。ROTAVAC® 合作已产生 20 多篇国际出版物,包括 2014 年在《柳叶刀》上发表的关键 III 期出版物。该项目由印度政府、比尔和梅琳达·盖茨基金会、挪威研究理事会、英国国际发展部和 Bharat Biotech 资助。
b'与 ED 一样,对于一般的混合态,EC 也很难计算,而且只在极少数特殊情况下才为人所知。但是,对于纯态,例如前面讨论过的 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 状态,EC = \xe2\x88\x92 Tr \xcf\x81 A log 2 ( \xcf\x81 A ) ,等于 ED 。实现纯态稀释过程的最佳方式是利用两种技术:(i)量子隐形传态,我们在一开始就介绍过,它简单地说是一个双方共享的贝尔态可以用来确定地转移一个未知的量子比特态,以及(ii)量子数据压缩[12],它的基本意思是,一个由 n 个量子比特组成的大消息,每个量子比特平均由一个密度矩阵 \xcf\x81 A 描述,可以压缩成可能更少的 k = nS ( \xcf\x81 A ) \xe2\x89\xa4 n 个量子比特;而且只要 n 足够大,就可以忠实地恢复整个消息。我们稍后会讨论量子数据压缩。纯态在渐近极限下的可逆性。有了这两个工具,爱丽丝可以先准备 n 份 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 (总共 2 n 个量子比特)在本地压缩 n 个量子比特为 k 个量子比特,然后 \xe2\x80\x9csend\xe2\x80\x9d 发送给 Bob,并使用共享的 k 个贝尔态将压缩的 k 个量子比特传送给 Bob。然后 Bob 将 k 个量子比特解压缩回未压缩的 n 个量子比特,这些量子比特属于纠缠态 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 的 n 个副本中的一半。因此,Alice 和 Bob 建立了 n 对 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 。这描述了纯态稀释过程的最佳程序。蒸馏的纠缠和纠缠成本被渐近地定义,即两个过程都涉及无限数量的初始状态的副本。对于纯态,EC = ED [7],这意味着这两个过程是渐近可逆的。但对于混合态,这两个量都很难计算。尽管如此,预计 EC ( \xcf\x81 ) \xe2\x89\xa5 ED ( \xcf\x81 ),即蒸馏出的纠缠不能比投入的多。形成的纠缠\xe2\x80\x94 是一个平均量 。然而,正如我们现在所解释的,有一个 EC 的修改,通过对纯态的 EC 取平均值获得,它被称为形成纠缠 EF [11, 13]。任何混合态 \xcf\x81 都可以分解为纯态混合 { pi , | \xcf\x88 i \xe2\x9f\xa9\xe2\x9f\xa8 \xcf\x88 i |} ,尽管分解远非唯一。以这种方式通过混合纯态构建混合态平均需要花费 P'
- FTSE组成部分的一个补充 - ftse集中套件中的七个补充 - 在FTSE SET SEAT伊斯兰教法指数FTSE FTSE RUSSELL中增加了22个添加 - 宣布将在2022年6月的2022年6月的Emi-nans Emecriual审查后FTSE组成的大型套件组成部分发生一个更改。茉莉技术解决方案已添加到FTSE集合大型指数中,BTS组持有量将从索引中删除。根据索引基本规则,每年对索引系列进行半审查。由于这次审查,亚洲航空,超越证券,BTS集团持有,Forth Corporation,Nex Point,Sabuy Technology和一个企业将被添加到FTSE SET中股指数中。影响增长房地产投资信托和茉莉技术解决方案将从指数中删除。Advanced Information Technology, AI Energy, Amata Corp, Asia Precision, BBGI, Bound and Beyond, Bumrungrad Hospital, Chiang Mai Ram Medical Business, Forth Corporation, Hana Microelectronics, INET Leasehold Real Estate Investment Trust, JAS Asset, Kerry Express (Thailand), Nusasiri, Precious Shipping, PTT Oil and Retail Business, Srinanaporn Marketing, Sriracha Construction, Stark Corporation,Thai Union Feedmill,Univanich Palm Oil和Vibhavadi医疗中心将包括在FTSE SET伊斯兰教法指数中。AIM工业增长永久业权和租赁房地产投资信托,曼谷航空公司,BJC重工业,全球电力协同作用,SIAM Global House,Sriracha Construction,Sriracha Construction,Thai Oil,Total Access Communication,TTCL和Univerures将从FTSE SET SHARIAH INDEX中删除。所有成分变更在2022年6月20日的业务开始时都会生效,下一次审查将于2022年12月进行。ftse Russell与泰国证券交易所(SET)合作,共同创建FTSE SET指数系列,并为泰国市场创建更广泛的索引,代表各种规模的公司,部门和主题。有关FTSE SET索引系列的更多信息,包括所有添加和删除以及基本规则,请访问https://www.ftserussell.com/products/indices/indices/set/set
b'我们提出了一系列量子算法,用于计算各种量子熵和距离,包括冯·诺依曼熵、量子 R\xc2\xb4enyi 熵、迹距离和 \xef\xac\x81delity。所提出的算法在低秩情况下的表现明显优于最知名的(甚至是量子的)算法,其中一些算法实现了指数级加速。特别是,对于秩为 r 的 N 维量子态,我们提出的用于计算冯·诺依曼熵、迹距离和 \xef\xac\x81delity(加性误差 \xce\xb5 内)的量子算法的时间复杂度为 \xcb\x9c O r 2 /\xce\xb5 2 、 \xcb\x9c O r 5 /\xce\xb5 6 和 \xcb\x9c O r 6 。 5 /\xce\xb5 7 . 5 1 。相比之下,已知的冯·诺依曼熵和迹距离算法需要量子时间复杂度为 \xe2\x84\xa6( N ) [AISW19,GL20,GHS21],而最著名的 \xef\xac\x81delity 算法需要 \xcb\x9c O r 21 . 5 /\xce\xb5 23 . 5 [WZC + 21]。我们的量子算法的关键思想是将块编码从先前工作中的幺正算子扩展到量子态(即密度算子)。它是通过开发几种方便的技术来操纵量子态并从中提取信息来实现的。特别是,我们基于强大的量子奇异值变换(QSVT)[GSLW19],引入了一种用于密度算子及其(非整数)正幂的特征值变换的新技术。我们的技术相对于现有方法的优势在于,不需要对密度算子进行任何限制;与之形成鲜明对比的是,以前的方法通常需要密度算子的最小非零特征值的下限。此外,我们还提供了一些独立感兴趣的技术,用于(次规范化)密度算子的迹估计、线性组合和特征值阈值投影仪,我们相信这些技术在其他量子算法中会很有用。'
透过量身定制的会议场景掌握沟通技巧保险代理人必须了解每位客户的独特需要。富通保险与Datality Lab共同研发的「AI Drill」,采用人工智能分析及机器学习技术,提供10个情景模拟,提升用户的沟通技巧,让他们透过对话更了解客户。「AI Drill」利用70个表现检查点和170个评分算法,评估代理人和代理人学生与具有不同背景设置的人工智能客户的沟通方式。从语调到流利度,从讲话内容到肢体语言,「AI Drill」提供更客观和全面的回馈机制,与培训师的个人知识相辅相成。富通保险代理首席代理官兼首席人才官苏婉玲表示:“富通保险一直致力为我们的代理人和保险专业人士提供最好的资源,协助他们发展个人成长,并在保险行业发展事业。”苏女士继续说道:“考虑到这一点,我们今年推出了‘LEAP & Beyond 创业发展计划’,帮助那些雄心勃勃的年轻人才培养创业技能。今天,我们加入了‘AI Drill’
1 1,麦吉尔大学,麦吉尔大学,麦克吉尔大学,蒙特利尔,QC加拿大QC H3A 2B4 *通讯作者:thomas.durcan@mcgill.ca摘要肌营养性侧面硬化症(ALS)代表着一种复杂的神经变性疾病,具有重要的属性症状。 迄今为止,遗传病因和驱动该疾病的潜在分子机制均尚未了解,尽管近年来,许多研究突出了许多ALS的遗传突变。 这些突变指出了可能在ALS中可能影响的潜在途径,具有产生人类神经元的能力和包含这些突变的其他疾病相关细胞的能力,如果出现新疗法,则变得更加关键。 随着诱导多能干细胞(IPSC)的出现,并定期间隔短的短文重复序列(CRISPR)基因编辑场为我们提供了在IPSC基因组中引入或纠正特定位点的特定突变的工具,从而模拟了风险突变的特定贡献。 在这项研究中,我们描述了一种将突变引入控制线或纠正突变的快速有效方法,从具有给定突变的患者衍生的IPSC产生了ISEGENIC控制线。 引入的突变是将G93A突变分成SOD1或H517Q中的FUS,而校正的突变是SOD1中I114T的患者IPSC线。 通过IPSCS和CRISPR编辑的组合,此处生成的细胞将提供对ALS中神经元变性的分子机制的基本见解。1,麦吉尔大学,麦吉尔大学,麦克吉尔大学,蒙特利尔,QC加拿大QC H3A 2B4 *通讯作者:thomas.durcan@mcgill.ca摘要肌营养性侧面硬化症(ALS)代表着一种复杂的神经变性疾病,具有重要的属性症状。迄今为止,遗传病因和驱动该疾病的潜在分子机制均尚未了解,尽管近年来,许多研究突出了许多ALS的遗传突变。这些突变指出了可能在ALS中可能影响的潜在途径,具有产生人类神经元的能力和包含这些突变的其他疾病相关细胞的能力,如果出现新疗法,则变得更加关键。随着诱导多能干细胞(IPSC)的出现,并定期间隔短的短文重复序列(CRISPR)基因编辑场为我们提供了在IPSC基因组中引入或纠正特定位点的特定突变的工具,从而模拟了风险突变的特定贡献。在这项研究中,我们描述了一种将突变引入控制线或纠正突变的快速有效方法,从具有给定突变的患者衍生的IPSC产生了ISEGENIC控制线。引入的突变是将G93A突变分成SOD1或H517Q中的FUS,而校正的突变是SOD1中I114T的患者IPSC线。通过IPSCS和CRISPR编辑的组合,此处生成的细胞将提供对ALS中神经元变性的分子机制的基本见解。小分子和生长因子的组合被用来指导编辑的细胞逐步分化为运动神经元,以证明可以为下游应用生成相关的疾病细胞。关键字:CRISPR,ISEGONIC IPSC,ALS,SOD1 -I114T,SOD1 -G93A,FUS -H517Q
20/21年第三季度,随着新冠疫情蔓延,日本出台一系列措施控制感染率并刺激经济活动,日本经济出现了初步复苏迹象。然而,鉴于全球经济低迷和当前感染率稳步上升,政府再次实施紧急状态并可能限制经济活动的风险相对较高,而且似乎很难确定这将在近期内对经济产生何种影响。在补习班和私人补习行业,许多公司被迫暂时停止所有运营,尤其是那些专门从事小组教学课程的公司。考虑到日本出生率下降的问题尚无明显解决办法,以及儿童教育和大学录取总体方法的革命,整个行业正在发生大规模变化。就我们的业务模式而言,我们基于日本出生率将继续下降的假设,并牢记“为孩子们的光明未来付出一切”的公司精神,努力提供切实有益的教育服务。利用我们高度多元化的业务模式,我们旨在成为我们领域的卓越力量,并将这一目标作为我们财务成功的基本政策。最初,我们在疫情开始时暂时关闭了学校,但随后我们采取了竞争对手学校所没有的措施,为学生创造了一个没有感染风险的学习环境。这些措施包括在所有教学间之间安装 190 厘米高的墙壁,用透明塑料窗帘将学生和导师隔开,要求学生和教师都戴上口罩,导师要戴面罩,以及其他预防措施。这些措施受到了好评,并在各种媒体上广泛展示。因此,尽管由于政府呼吁学生自我克制外出,我们的学生人数最初有所下降,但在 20/21 财年第二季度末,学生人数已恢复到略高于 2019/20 财年第二季度同期的水平。此外,在新冠疫情爆发后,日本宣布进入紧急状态,据报道全国医疗机构设备短缺,我们开始向东京及其周边三个县(神奈川、埼玉、千叶)捐赠医用级面罩。我们将继续致力于为学生提供安全的环境,让他们安心学习,同时继续致力于集团各个领域的发展。
Maruha Nichiro 推出具有 AI 跟踪功能的鱼类计数系统 — 用于水产养殖的自动活鱼计数流程 —