Motorsport驾驶员撞车安全性(MEGR 3092:批准的赛车运动选修; MEGR 3097:批准的生物医学技术选修课)课程,具有生物医学工程(生物力学)和Motorsport机械工程之间的跨学科课程,用于引入撞车伤害的工具和工程撞击预防和驾驶员保护原理。班级将使用赛车和乘用车安全的示例来介绍和教授乘员保护原则,这些原则也适用于许多运输方式,军用车辆,太空旅行和儿童约束系统。
Dear Edward, Thank you for the opportunity to appear before the Net Zero, Energy and Transport Committee to discuss the programme of work that the Scottish Government is undertaking on climate change. You asked to be provided with some information in advance of this to support the Committee's preparation for that session - please find my response to that request below which I hope the Committee will find useful. Climate Change Plan and proposed Climate Change Bill As I announced on 18 April, development of the next Climate Change Plan is now continuing in the context of forthcoming proposals for legislative change. My immediate priority is to address the points raised by the CCC in their latest progress report and introduce legislation to Parliament in due course. It is important to underline that this Government remains fully committed to meeting our target of net zero emissions by 2045 at the latest. With emissions already cut by almost 50%, we are now entering the second half of our journey to net zero. While we are seeking to realign our target pathway to Climate Change Committee advice, I must be clear that there is no change in the challenge ahead: we have twenty years to finish the job and reach net zero. The hardest part of this journey is undoubtedly ahead of us and all parties must be prepared to join us in making the difficult delivery decisions that will be required to deliver our shared aim. This means we must continue driving down emissions as fast as we can, in a way that is just and fair. That is why this Government announced earlier this month a raft of new climate action in transport, agriculture, taxation, land use and industry. In this next phase of our journey these announcements will set the context for the next Climate Change Plan. The full package of new climate action can be found here but includes, for example:
英国 • 人工智能(监管)法案(私人议员法案)(由于大选而未进行,但此后将重新提出) • 2024 年 1 月发布的当前政府立场 • 政府对 2024 年 1 月发布的白皮书的回应表明,政府目前不打算引入立法来监管人工智能,但希望监管机构通过现有法律(包括英国 GDPR)来监管人工智能的使用。• 主要反对党表示,如果在大选中取得成功,它将对开发最强大人工智能模型的公司引入具有约束力的监管。
大脑计算机界面(BCI)应用提供了一种直接的方法,将人脑活动映射到外部设备的控制上,而无需进行物理运动。这些系统,对于医疗应用至关重要,也对非医疗应用程序有用,主要使用非侵入性记录的EEG信号,用于系统控制,并需要算法将信号转换为命令。传统的BCI应用程序在很大程度上取决于针对特定行为范式量身定制的算法,并使用具有多个通道的EEG系统来收集数据。这使可用性,舒适性和负担能力复杂化。更重要的是,广泛的培训数据集的有限可用性限制了将收集到的数据分类为行为意图的强大模型的开发。To address these challenges, we introduce an end-to-end EEG classification framework that employs a pre-trained Convolutional Neural Network (CNN) and a Transformer, initially designed for image processing, applied here for spatiotemporal represen- tation of EEG data, and combined with a custom developed automated EEG channel selection algorithm to identify the most informative electrodes for the process, thus reducing data dimensionality, and放松主题的舒适性,并改善了脑电图数据的分类性能到受试者的意图。我们使用两个基准数据集(EEGMMIDB和OpenMiir)评估了我们的模型。与现有的最新脑电图分类方法相比,我们取得了卓越的性能,包括常用的EEGNET。这项研究不仅可以推进BCI领域,而且还为BCI应用程序提供了一个可扩展和负担得起的框架。我们的结果表明,OpenMiir的分类精度提高了7%,EEGMMIDB的分类为1%,平均值分别达到81%和75%。重要的是,这些改进是通过较少的记录渠道和较少的培训数据获得的,这证明了一个框架,可以从培训数据的量以及大脑信号所需的硬件系统的简单性方面支持更有效的BCI任务方法。
