培养的花生被用作识别Ahmlo基因座的参考。我们的结果表明,鉴定了25个Ahmlo基因座,并分布在培养花生的铬味上。11个Ahmlo基因座位于A基因组上,其余14位在B-Genome上。在Ahmlo基因座的编码序列中观察到插入的内含子序列(4-14)和跨膜螺旋(4-8)的可变数量。此外,Ahmlo基因座的系统发育分析以及来自其他物种的同源物将Ahmlo基因座聚集成六个进化枝。将三个Ahmlo基因座聚集在已知的进化枝V中,以重新组合粉状易感性位点。此外,在特定AHMLO的启动子区域预测了四个核心启动子以及与PM敏感性有关的顺式调节元件。这些结果提供了有力的证据表明MLO基因座在培养的花生基因组中的鉴定和分布,并且可以使用识别的AHMLO基因座进行识别的特定ahmlo基因座,可用于丧失易感性研究。
弗里德赖希共济失调 (FRDA) 是一种遗传性多系统疾病,主要由 frataxin (FXN) 基因内含子 1 中的 GAA 过度扩增引起。这种扩增突变在转录上抑制了 FXN,FXN 是一种线粒体蛋白,是铁代谢和线粒体稳态所必需的,导致神经退行性和心脏功能障碍。目前,FRDA 的治疗方案集中于通过药物干预改善线粒体功能和增加 frataxin 表达,但在临床试验中无法有效延缓或预防神经退行性病变。最近在 FRDA 动物和细胞模型中对体内和体外基因治疗方法的研究展示了其作为 FRDA 一次性疗法的前景。在本综述中,我们概述了 FRDA 基因治疗的当前和新兴前景,特别关注 CRISPR/Cas9 介导的 FXN 基因编辑作为恢复内源性 frataxin 表达的可行选择的优势。我们还评估了造血干细胞和祖细胞中的体外基因编辑作为潜在的自体移植治疗选择的潜力,并讨论了其在解决 FRDA 特定安全问题方面的优势,以实现临床转化。
摘要 CRISPR-Cas9 广泛用于小鼠和大鼠的基因靶向。非同源末端连接 (NHEJ) 修复途径在受精卵中占主导地位,可有效诱导插入或缺失 (indel) 突变,从而在靶位点敲除基因,而通过同源定向修复 (HDR) 的基因敲入 (KI) 则难以产生。在本研究中,我们使用双链 DNA (dsDNA) 供体模板与 Cas9 和两个单向导 RNA,一个用于切割目标基因组序列,另一个用于切割 dsDNA 质粒的侧翼基因组区域和一个同源臂,在 G0 幼崽中产生 20-33% 的 KI 效率。 G0 KI 小鼠在一个靶位点携带 NHEJ 依赖的插入/缺失突变,该突变设计在内含子区域,而在另一个外显子位点携带 HDR 依赖的各种供体盒(例如 EGFP 、mCherry 、Cre 和感兴趣的基因)的精确 KI,这些供体盒的长度从 1 到 5 kbp 不等。这些发现表明,这种由 CRISPR-Cas9 系统介导的 NHEJ 和 HDR 组合方法有助于在小鼠和大鼠中高效、精确地 KI 质粒 DNA 盒。
血友病A(HA)是由凝血因子VIII(FVIII)引起的一种常见出血疾病,长期以来一直被认为是基因治疗研究的有吸引力的靶标。然而,全长F8 cDNA不能通过腺相关病毒(AAV)向量能够充分包装。作为引起严重HA的第二大突变,F8内含子1反转(INV1)是由内骨体内重组引起的,因此大多数F8(外显子2-26)未转录。从理论上讲,可以通过整合启动子和外显子1。为了在体内测试此策略,我们通过删除F8的启动子区域和外显子1来生成HA小鼠模型。供体DNA和CRISPR/SACAS9被包装到AAV载体中,并静脉注射到HA小鼠中。治疗后,恢复F8表达并缩短了激活的部分凝血蛋白时间(APTT)。我们还比较了两个肝脏特异性启动子和两种整合供体向量。使用活性启动子时,所有处理过的小鼠都在尾盘挑战中幸存下来。这是一个体内基因修复策略的第一个报告,有可能治疗HA患者的复发突变。
摘要对瓦罗阿击蛋白的饲养源细胞的摘要是一种特征,最近吸引了对蜜蜂育种的兴趣,以选择耐螨的Apis mellifera菌落。为了研究该性状的遗传结构,我们评估了一个样本。Mellifera Mellifera菌落(n = 155)来自瑞士和法国,并进行了全基因组关联研究,使用每个菌落500名工人进行下一代测序。结果表明,两个QTL显着(p <0.05),与destructor -destructor摄取的育雏细胞的回旋相关。最佳相关的QTL位于以前发现与修饰行为相关的区域的5号染色体上,这是对V. destructor的抗性性状,在a中。Mellifera和Apis Cerana。第二最佳相关的QTL位于DSCAM基因内含子中的4号染色体上,该基因与神经元接线有关。先前的研究表明,与神经元接线有关的基因与回顾和Varroa敏感卫生有关。因此,我们的研究证实了基因区域对5染色体在社会免疫中的作用,并同时提供了对蜂蜜蜜蜂常见螨抗性性状之间遗传相互作用的新见解。
具有CRISPR-CAS9的基因组工程中的长期障碍一直无法衡量Cas9编辑结果及其在单细胞分辨率下的功能效应。在这里,我们提出了Superb-Seq,这是一种利用T7原位转录和单细胞RNA测序的新技术,以共同测量靶向靶标Cas9编辑及其对基因表达的影响。我们在10,000 k562细胞上进行了高级seq,靶向了四个用七个引导RNA的染色质重塑基因。Superb-Seq在所有七个目标站点和其他36个非目标位点上确定了11,891个编辑事件。尽管选择了七个指南的高特异性,但其中有六个导致靶向脱靶编辑,频率从0.03%到18.6%的细胞范围不等。在USP9X的第一个内含子中,明显的脱靶编辑破坏了该基因的表达和超过150个下游基因。总而言之,由于罕见和常见的编辑事件的结合,CAS9非目标是普遍存在的,主要发生在靶向基因的内含子内,并且可以对基因表达产生广泛的影响。Superb-Seq使用现成的套件,标准设备,并且不需要病毒,这将使全基因组CRISPR屏幕能够在不同的细胞类型中以及与临床相关的指南的功能表征。
背景Spinraza用于治疗小儿和成年患者的脊柱肌肉萎缩(SMA)。它包含努西替森(Nusinersen),这是一种修饰的反义寡核苷酸,旨在治疗由5Q染色体中突变引起的SMA,导致SMN蛋白质缺乏。Nusinersen在SMN2转录本的外显子7内内部中与特定序列结合。使用体外测定和在SMA的转基因动物模型中进行研究,Spinraza被证明会增加外显子7纳入SMN2 Messenger核糖核酸(mRNA)转录物以及全长SMN蛋白的产生(1)。调节状态FDA批准的指示:Spinraza是一种生存运动神经元2(SMN2)指导的反义寡核苷酸,指示用于治疗小儿和成人患者的脊柱肌肉萎缩(SMA)(1)。医师应在基线和每剂剂量之前获得血小板计数和适当的凝血实验室测试。在这些研究中,没有患者的血小板计数小于50,000个细胞。此外,由于肾脏毒性的风险,在基线和每次剂量之前需要定量尿液测试(1)。在为Spinraza进行的临床研究中,这些研究中的患者曾经或可能发展I型,II或III SMA。临床研究不包括0型和IV(1)。
具有CRISPR-CAS9的基因组工程中的长期障碍一直无法衡量Cas9编辑结果及其在单细胞分辨率下的功能效应。在这里,我们提出了Superb-Seq,这是一种利用T7原位转录和单细胞RNA测序的新技术,以共同测量靶向靶标Cas9编辑及其对基因表达的影响。我们在10,000 k562细胞上进行了高级seq,靶向了四个用七个引导RNA的染色质重塑基因。Superb-Seq在所有七个目标站点和其他36个非目标位点上确定了11,891个编辑事件。尽管选择了七个指南的高特异性,但其中有六个导致靶向脱靶编辑,频率从0.03%到18.6%的细胞范围不等。在USP9X的第一个内含子中,明显的脱靶编辑破坏了该基因的表达和超过150个下游基因。总而言之,由于罕见和常见的编辑事件的结合,CAS9非目标是普遍存在的,主要发生在靶向基因的内含子内,并且可以对基因表达产生广泛的影响。Superb-Seq使用现成的套件,标准设备,并且不需要病毒,这将使全基因组CRISPR屏幕能够在不同的细胞类型中以及与临床相关的指南的功能表征。
背景Spinraza用于治疗小儿和成年患者的脊柱肌肉萎缩(SMA)。它包含努西替森(Nusinersen),这是一种修饰的反义寡核苷酸,旨在治疗由5Q染色体中突变引起的SMA,导致SMN蛋白质缺乏。Nusinersen在SMN2转录本的外显子7内内部中与特定序列结合。使用体外测定和在SMA的转基因动物模型中进行研究,Spinraza被证明会增加外显子7纳入SMN2 Messenger核糖核酸(mRNA)转录物以及全长SMN蛋白的产生(1)。调节状态FDA批准的指示:Spinraza是一种生存运动神经元2(SMN2)指导的反义寡核苷酸,指示用于治疗小儿和成人患者的脊柱肌肉萎缩(SMA)(1)。医师应在基线和每剂剂量之前获得血小板计数和适当的凝血实验室测试。在这些研究中,没有患者的血小板计数小于50,000个细胞。此外,由于肾脏毒性的风险,在基线和每次剂量之前需要定量尿液测试(1)。在为Spinraza进行的临床研究中,这些研究中的患者曾经或可能发展I型,II或III SMA。临床研究不包括0型和IV(1)。
弗里德赖希共济失调 (FRDA) 是一种常染色体隐性神经退行性疾病,由 frataxin (FXN) 基因内含子 1 中的 GAA 重复扩增引起,导致线粒体铁结合蛋白 frataxin 的表达显著降低。我们之前报告说,同基因造血干细胞和祖细胞 (HSPC) 移植可防止 FRDA 小鼠模型 YG8R 中的神经退行性。我们表明,挽救机制是由功能性 frataxin 从 HSPC 衍生的小胶质细胞/巨噬细胞转移到神经元/肌细胞所介导的。在本研究中,我们报告了使用 CRISPR-Cas9 系统进行 FRDA 自体 HSPC 移植的第一步。我们首次鉴定出一对 CRISPR RNA(crRNA),它们可有效消除人类 FRDA 淋巴母细胞中的 GAA 扩增,恢复 frataxin 表达的非病理水平,并使线粒体活动正常化。我们还优化了从健康和 FRDA 患者外周血中分离的 HSPC 中的基因编辑方法,并证明基因编辑细胞在体外和体内造血正常。该过程不会诱发细胞毒性作用或重大脱靶事件,但在基因编辑细胞中观察到 p53 介导的细胞增殖延迟。这项研究为将基因校正的 HSPC 自体移植用于 FRDA 的临床转化奠定了基础。
