我们表明,存在非相对论散射实验,如果成功,可以冻结、加速甚至逆转散射区域中任何量子系统集合的自由动力学。这种“时间平移”效应是普遍的,也就是说,它独立于散射粒子和目标系统之间的特定相互作用,或者独立于控制后者演化的(可能非厄米的)哈密顿量。该协议要求精心准备散射的探针,并在实验结束时对这些探针进行投影测量以预示成功。我们充分描述了通过固定持续时间的散射协议可以对多个目标系统实现的可能的时间平移。核心结果是:a) 当目标是一个单一系统时,我们可以将其在时间上向后平移,其量与实验运行时间成比例; b) 当散射区域有 n 个目标时,我们可以使单个系统演化速度加快 n 倍(向前或向后),但代价是保持剩余的 n -1 个系统在时间上保持静止。因此,当 n 较大时,我们的协议允许人们在较短的实验时间内将系统映射到它在正时间或负时间内经过非常长时间的不受干扰的演化所达到的状态。自工业革命以来,辨别哪些行为可以加速、减慢或逆转物理过程(如化学反应)的自然演化一直是一个首要主题。将物理系统映射到其自由演化曲线上某一点的变换称为时间平移 [1]。在量子理论中,对于某个实数 T ,时间平移对处于 | ψ 0 ⟩ 状态且具有自由哈密顿量 H 0 的系统的影响是将后者传播到 e - iH 0 T | ψ 0 ⟩。对于 T > 0 ,在时间 T ′ = T 内实现这种转换只需等待时间 T 。有趣的时间转换是那些可以在时间 T ′ ̸ = T 内完成的转换。存在几种在物理系统上进行非平凡时间转换的机制。其中一些基于量子信息处理,要求实验者掌握大量有关目标系统的知识。考虑最简单的方案,包括实现单量子
Arnav Kapur 麻省理工学院 15,000 美元 “用它!” Lemelson-MIT 学生奖毕业生获得者 AlterEgo,一种非侵入性外周神经计算机接口和 ISGEC(计算机基因表达构建),一个可定制的基因表达测量平台 挑战:计算机和人工智能一直被视为外部实体或代表我们进行计算和行动的外部黑匣子设备。问题是,我们能否颠倒过来,将人类和计算机(人工智能)结合为一个实体,以增强人类的认知和能力,而不是依赖将我们与环境隔离开来的外部接口?仅在美国,就有超过 750 万人在患病或受伤后患有言语障碍。1然而,最常用的可以让这些患者更好地沟通的系统效用有限。符号集(印有字母、单词或图标的纸张)和一种称为稳态视觉诱发电位 (SSVEP) 的过程(将字符应用于显示器上,用户通过眼球运动进行选择)既难以使用,又会导致令人沮丧的缓慢交流,因为用户通常一次只能选择一个字符。因此,患有言语障碍的人往往无法实时分享他们的想法和观点。解决方案:Arnav 的主要发明 AlterEgo 是一个由三部分组成的感官和听觉反馈系统。第一部分使用来自内部语音系统的微妙神经肌肉信号来提取语音。当我们大声说话时,我们的大脑会将电信号传输到 100 多块肌肉和声带以产生语音。当我们在内心对自己说话时,通过非常微妙地只使用我们的内部语音系统,神经信号就会被发送到这些内部系统。从皮肤表面,AlterEgo 能够检测到来自口腔深处的这些信号,并理解一个人想要说什么。系统的第二部分传输从电信号中收集的信息,并将其发送到在后台运行在设备上的人工智能代理。人工智能代理理解数据并准备响应以供音频反馈系统投射。设备的第三部分是双重的。用户可以通过
德国德累斯顿和马萨诸塞州列克星敦,2024 年 4 月 23 日——Seamless Therapeutics 今天宣布任命 Albert Seymour 博士为新任总裁兼首席执行官,任命 Adam Rosenberg 为公司董事会独立主席。两人都拥有成功领导开拓性生物技术公司的长期记录,重点是基因编辑和新技术。此外,他们的综合经验将有助于 Seamless Therapeutics 在美国开展研发 (R&D) 活动。随着领导层的增加,Seamless Tx Inc. 将在马萨诸塞州列克星敦成立,专注于将差异化重组酶技术从早期发现转化为临床。Seymour 博士将驻扎在该办公室,取代代理首席执行官兼联合创始人 Anne-K. Heninger 博士,后者将继续留在公司并继续担任运营主管,负责监督德累斯顿工厂的运营。 Seamless 正在将编程重组酶(一种在科学研究中广泛使用数十年的酶)方面的重大突破转化为治疗性基因编辑的准确性和灵活性。该公司独特的技术平台允许位点特异性可编程重组酶,这些重组酶经过设计,具有特异性和活性,可精确切除、交换、反转或插入任何目标基因序列中的 DNA 片段。早期体内临床前证据表明,Seamless 的可编程重组酶可以通过反转精确编辑 138 千碱基片段。通过此过程进行编辑与细胞的 DNA 修复途径无关。该平台提供了使用单一疗法解决多种致病突变以及将基因编辑扩展到非分裂细胞类型的机会。该公司迄今已筹集了 2500 万美元的种子资金,由 Forbion 和 Wellington Partners 牵头,以推进其专有技术。该团队目前专注于生成一系列创新候选产品,旨在治疗人类疾病,而不管具体的基因改变如何。 Seamless Therapeutics 首席执行官 Albert Seymour 博士表示:“Seamless Therapeutics 凭借其独特的平台和全面的工具箱(能够对重组酶进行编程),走在基因编辑下一波创新的前沿。平台技术加上我们在莱克星顿的研发团队的壮大,提供了工具和专业知识,可以精确纠正基因组特定位点的一系列 DNA 突变。我们的目标是继续创新,为一系列疾病带来新的治疗方法,从而解决重大的未满足医疗需求。”“Seamless Therapeutics 的潜力
这些是补充说明,在其中我通过还原提供了一些安全证明的例子。他们应该(希望)有助于向您展示如何进行作业以及填写我没有时间涵盖讲座的一些细节。通过还原证明的基本思想是表明,如果我们可以有效地解决计算问题,那么我们可以有效地解决计算问题B。我们通过展示如何有效地解决问题B的算法来证明这一点,前提是它可以访问解决问题a的子例程。这种算法称为从B到A的减少。作为密码学家,我们通常将其抬起头并采用对立。特别是,如果我们从B到A减少了,并且我们认为B很难(即无法有效地解决B),那么我们还必须相信A很难。(请注意,在这里对方向感到困惑很容易。即,当您打算显示从B到A的减少时,很容易意外显示从A到B的减少。逐渐退步并询问您要证明什么是很好的。例如,如果您要证明A很难,那么您想证明A的有效算法会暗示荒谬的东西:例如,B。)这样的证明是密码学的面包和黄油,我们经常使用它们。降低密码学也往往很微妙,原因有很多。例如,考虑单向函数的示例。也就是说,pr x〜 {0,1} n [x'←a(1 n,g(x)):g(x)= g(x'')]≥ε(n),(1)也许最重要的是,在密码学中,我们研究的问题(a和b)几乎总是平均案例问题,我们通常对是否存在具有不可忽略的概率的A和B的有效算法感兴趣,还是具有不可忽视的优势。假设我们对单向函数g进行了一些构造,并且我们想证明它在某些其他单向函数F是安全的假设下是安全的(即难以倒置)。为此,我们首先采取逆向性:我们表明,如果G是不安全的,那么F一定是不安全的。这样做,我们想显示从破坏F的问题到打破G的问题的减少。换句话说,我们假设我们可以访问PPT对手A,该对手A将G反转的概率不可忽略。
远程工作的突然增加导致了2020年至2022年之间美国住房市场的巨大变化。Recent research has documented that remote work raised the demand for housing (Behrens, Kichko and Thisse, 2021; Mondragon and Wieland, 2022; Brueckner, Kahn and Lin, 2021), flattened intracity house price gradients (Brueckner et al., 2021; Ramani and Bloom, 2021) and reallocated demand across cities (Delventhal and Parkhomenko,2020年; Mondragon和Wieland,2022年)。在那个时期,皇家租金上涨了8%,而皇家房价上涨了20%以上。短期住房供应是高度弹性的,因此自然而然的需求增加会导致租金和价格上涨。,但是从长远来看,远程工作对住房市场的影响可能与在房屋建设的机会很少的时期大不相同。本文研究了远程工作对住房负担能力和影响的长期影响。我们认为,远程工作对住房负担能力的影响可能与短期变化不同。我们考虑远程工作可能会改变住房需求的两种方式。首先,需求从大城市的中央商务区转移,那里供应住房。由于需求落在无弹性住房供应的地区,并且在具有弹性的地区增加,因此住房成本平均下降。第二,远程工作增加了对空间的需求,因为人们使用家庭办公室并在家中花费更多时间(Stanton and Tiwari,2021年)。位置具有特定地点的长期住房供应弹性。这种力量在短期和长期内提高了住房的成本,取决于平均长期住房供应弹性,其长期影响。我们使用旨在捕捉短期和长期住房需求的美国住房市场模型研究这些力的净效应,以及短期和长期住房供应弹性的差异。在霍华德(Howard)和利伯斯奥恩(Liebersohn)(2021)上建造,家庭要求在某个地方使用大量住房和对居住的需求,在这种情况下是一个县。我们为每个位置的租金和人口变化提供了公式,这是对住房需求的冲击以及在供应弹性和两个需求弹性的情况下居住在每个位置的需求。我们使用该模型分两个步骤计算远程工作的长期效果。在第一步中,我们将模型逆转,以计算出使用观察到的租金和人口变化从2020年至2022年开始的远程工作引起的住房需求冲击和位置需求冲击。支持冲击需要关于住房需求弹性的假设,这是我们从文献中获取的。重要的是,我们假设住房供应在短期内是无弹性的。确认我们的位置需求冲击确实与远程工作有关,我们
量子信息在密码学中的应用可以追溯到 Wiesner [ 39 ] 的工作,他提出了第一个量子密码工具,即共轭编码。值得注意的是,共轭编码的思想仍然以不同的形式应用于许多现代量子密码协议中。然而,自从 Bennett 和 Brassard [ 6, 5 ] 提出量子密钥分发 (QKD) 之后,量子密码学获得了很大的吸引力。后来 Lo 和 Chau [ 23 ] 和 Mayers [ 26 ] 证明 QKD 在信息理论上是安全的。Shor 和 Preskill [ 36 ] 给出了一种基于纠错码的更容易理解的安全性证明。尽管从理论上讲 QKD 提供了完美的安全性,但它的实际实现并不 (并且可能不会) 完美。这意味着 QKD 实现与其他密码实现一样,容易受到旁信道攻击,例如,参见 [ 24 ]。即使我们假设 QKD 在实践中提供了完美的安全性,还有许多其他重要的加密任务,如比特承诺、多方计算和无意识传输,都无法通过密钥分发来解决。事实上,Mayers [ 25 ] 以及 Lo 和 Chau [ 22 ] 证明了无条件安全的量子比特承诺是不可能的。Colbeck [ 11 ] 后来也证明了利用量子通信进行信息理论上安全的双方计算是不可能的。如果假设对手的计算能力有限或存储空间有限,则可以保证此类方案的安全。因此,计算假设在量子密码学中仍然是必要的,而且非常重要。特别是,需要进一步研究量子公钥密码学中计算假设的必要性,而量子公钥密码学是量子密码学中越来越重要的领域。量子公钥密码学的原理与经典公钥密码学的原理非常相似。在量子公钥方案中,每个用户 A 都有一对密钥(sk A ,pk A ),其中私钥sk A 只有 A 知道,公钥pk A 由 A 发布,所有人都可以访问。密钥对由高效的密钥生成算法生成。与经典公钥方案一样,量子公钥方案也是基于陷门单向函数建模的。通俗地说,单向函数是一种易于计算但难以逆的函数。陷门单向函数是可以将某些信息k(称为陷门)与单向函数f 关联起来的函数,任何知道k 的人都可以轻松逆向f [7]。在量子设置中,f 是从私钥空间到公钥空间的映射| α ⟩7→| f α ⟩。私钥| α ⟩可以是经典状态或量子态,公钥| f α ⟩ 是量子态。量子公钥密码学的三个主要构造是公钥加密、数字签名和公钥货币。在本文中,我们重点讨论量子公钥加密。有关量子数字签名,请参阅 [ 13 ],有关量子货币,请参阅 [ 1 , 2 , 12 ]。在公钥加密方案中,用户 B 可以使用 A 的公钥 pk A 和公共加密算法将 m 编码为密文 c,从而向 A 发送秘密消息 m。收到密文 c 后,用户 A 使用其私钥 sk A 和公共解密算法解密 c。
湖泊基本信息 位置:银湖位于明尼苏达州瓦西卡县 23 区(威尔顿镇)西 206 镇北 17、18 和 19 区。它位于沃尔多夫东北约 4 英里处,瓦西卡西南 8 英里处(图 1)。 面积:银湖的蜿蜒区域约为 417 英亩。42 英亩的新生沼泽子盆地(DOW 81-0119-00)从湖的东北部延伸。 海岸线:海岸线长约 4.0 英里。约 88% 的海岸线被一排狭窄的树林包围,其余主要为沼泽地。住宅开发仅限于湖边的少数住宅/农庄。湖周围的高地起伏平缓,沿着大部分海岸线向湖盆急剧下降。图 2 是 2021 年的航拍照片,展示了银湖、入口沼泽和附近的土地使用情况。 访问:银湖没有开发的公共通道。 流域:银湖位于明尼苏达河流域勒苏尔河流域内的小科布河流域。银湖泊流域面积约为 4.1 平方英里(包括湖盆),如图 3 所示。该集水区内的主要土地用途是农业行作物。银湖是 Bull Run Creek 的一条源头支流,流入小科布河,然后流入科布河,然后流入勒苏尔河。排水比约为 6:1,足以在降水量正常的年份维持水位。该湖被归类为具有半永久性水态。虽然在更严重的自然干旱期间,水会从流域的大部分地区退去,但湖水很少完全干涸。 入口:至少有 3 个地面入口流入湖中。 42 英亩的沼泽从湖的东北端东部流入盆地,一条从北部流出的短沟渠也从湖的东北角流出,一条小沼泽流向东南海岸线。未知数量的短排水沟和农业用地也从周围的土地排入湖中。出口:银湖的出口位于西端。明尼苏达州拥有一座建于 1938 年的“C 型”混凝土大坝(图 4)。大坝有四 (4) 个 5 英尺宽的拦水坝,提供 20 英尺的溢洪道。根据 2021 年的 MNDNR 水文调查,大坝门槛高程为 1049.95 英尺(除非另有说明,所有高程均表示为 1929 年 NGVD)。授权的拦水坝设置在大坝门槛上方 1.3 英尺处,即约 1051.3 英尺。一段时间以来,桥台和土堤已被破坏并不断恶化。目前,该结构无法在湖中蓄水,已移除止水木以帮助减缓土堤的侵蚀。明尼苏达州自然资源部在 2021 年测量了大坝上游约 350 至 400 英尺处的沙堆上的流出高度约为 1050.3 英尺。来自银湖的水流通过一条 80 英寸 x 60 英寸的波纹金属管,流经一条横跨 60 街(21 号县道)的水渠,下游约 1000 英尺。水流在涵洞下游与 Bull Run Creek 汇合。这条下游第一条涵洞的底面深 1049.37 英尺。过去,水控制结构的下游侧曾安装过一个鲤鱼屏,但现已拆除。正常高水位:银湖的既定正常高水位 (OHW) 为 1051.6 英尺。