哺乳动物胎生发育需要胎盘作为胎儿和母体子宫之间的中间界面而进化。除了保留胎儿和分泌营养物质以支持生长发育到足月之外,胎生物种还必须改变或抑制母体免疫系统识别半同种异体胎儿。囊胚从透明带孵化后,滋养层细胞分化为母体子宫内膜提供初始通讯,以调节黄体孕酮的产生以及子宫和妊娠建立和维持所必需的胚胎发育中的生物途径。许多胚胎因子已被提出用于建立和维持妊娠。CRISPR-Cas9 基因编辑技术提供了一种特定且有效的方法来生成动物模型以进行功能丧失研究,以研究特定胚胎因子的作用。 CRISPR-Cas9 基因编辑的使用为研究妊娠因子在猪妊娠发育和建立中的具体作用提供了一种直接的方法。这项技术有助于解决许多有关植入期发育的问题,并改变了我们对猪母体识别和维持妊娠的理解。生殖 (2021) 161 R79–R88
摘要 本研究调查了同伴合作学习策略对有行为问题学生自我效能的影响。还研究了性别的调节作用以及学习策略和性别的交互作用。三个问题和三个零假设(P 检验 <.05)指导了这项研究。本研究采用准实验前测、后测、非等效对照组设计。样本为尼日利亚埃努古州恩苏卡镇四所中学七个完整班级中被认定为对立违抗性障碍 (ODD) 的 125 名中学学生,这些学生是特意选择的。研究人员制作了名为《学生行为问题观察清单》(PBPOC)(教师版)的问卷。学生行为问题测量量表(PBPMS)和学生自我效能信念测量量表(PSEBMS)是用于收集研究数据的工具。问卷中的项目由尼日利亚恩苏卡大学教育学院的专家审核。在内部一致性检验中,学生行为问题测量量表(PBPMS)的 alpha 值为 0.85,而 PSEBMS 的 alpha 值为 0.92。使用平均值、标准差和协方差分析来分析收集到的数据。研究的主要结果表明:同伴协作学习策略对埃努古州恩苏卡地方政府教育局对立违抗性障碍(ODD)学生的自我效能感有显著影响;性别对埃努古州恩苏卡地方政府教育局 ODD 学生的自我效能感没有显著的调节作用;教学策略和性别对 ODD 学生的自我效能感没有交互作用。提出的主要建议包括,每所实施包容性教育的学校都应采用结构良好的同伴协作学习策略,以吸引有特殊需要的学生,尤其是有 ODD 类行为问题的学生的兴趣。这将鼓励有此类需要的学生充分融入社会,获得学术独立并适应良好。简介
摘要:本研究旨在探讨氯膦酸盐脂质体联合顺铂或索拉非尼对肝癌细胞系FOXQ1表达及生物学功能的影响。采用实时定量聚合酶链式反应(qRT-PCR)检测正常肝细胞系和肝癌细胞系中FOXQ1的表达。HepG2和MHCC97H细胞分别给予低、中、高浓度的顺铂(3、5和7 μg/ml)或索拉非尼(2、7和20 μg/ml)联合氯膦酸盐脂质体(LC,20μg/ml),检测各组FOXQ1的表达。采用细胞迁移、MTT和Transwell实验检测各处理对HepG2和MHCC97H细胞生物学功能的影响。 qRT-PCR结果显示,4种肝癌细胞系中FOXQ1 mRNA表达均高于正常细胞,且在HepG2和MHCC97H细胞中FOXQ1 mRNA的表达更占优势。所有试验剂量的顺铂均下调FOXQ1表达,但仅高剂量索拉非尼下调FOXQ1表达,而低、中浓度索拉非尼对FOXQ1表达无明显影响。顺铂或索拉非尼与LC联合应用时,FOXQ1表达水平明显降低。细胞迁移、MTT和transwell实验显示,各药物单独应用时增殖、迁移和侵袭均受到抑制,但与氯膦酸盐脂质体联合应用时作用更强。脂质体氯膦酸盐联合顺铂或索拉非尼可以下调HepG2和MHCC97H肝癌细胞中FOXQ1的表达,抑制其增殖、迁移和侵袭。
几十年来,人们对开发神经精神疾病新疗法的事业持适度悲观态度,但最近在新治疗方法的使用方面取得了进展。例如,考虑到氯胺酮给药和脑刺激技术对尚未确定正确治疗方法的抑郁症患者的疗效,我们有理由感到乐观。1-4 然而,尽管取得了这些进展,但仍有很长的路要走,我们小组认为,磁共振成像 (MRI) 技术的使用可能在治疗策略的持续发展和改进中发挥重要作用。虽然这已经是一个流行的观点一段时间了,但基于 MRI 的脑结构和功能指标技术经常因无法用作诊断、治疗设计或治疗效果评估的临床相关生物标志物而受到批评。目前,所有神经精神疾病亚型的疾病分类通常不是通过基于生物标志物的标准来定义的,而是通过临床观察来定义,然后根据临床观察结果来制定临床定义(例如,尚未确定正确治疗方法的精神分裂症患者)。虽然寻找类似 HbA 1c 的生物标志物(用于诊断糖尿病)来进行神经精神疾病的临床分期、预后和预测发病时间很诱人,但值得注意的是,神经生物学特征可能与描述遗传学和脑回路的指数相互作用。按照这种思路,大多数神经影像学工作可以被描述为单模态研究:在给定样本的单个时间点研究单个神经影像学模态(例如,仅结构 MRI),尽管可能收集了多个对比。虽然这些研究无疑很有用,有助于了解疾病的病理生理学,但多模态研究(评估同一人群中的多种神经成像模式)有可能提供更全面的数据,可用于分析以识别生物标志物。值得注意的是,先前的研究表明,结构和功能 MRI 都可以用作改进脑部成像的手段
肾小球病理学发现的分类 UP LEARNING 和肾病专家 - AI 集体 ENGROCTIVE 方法 Eiichiro Uchino #A,B Yugami C , Sachiko Minamiguchi f , Hironi Haga f , Motoko Yanagita B,g , Yasushi Ono D,HA) 京都大学医学院医学智能系统系,日本京都 B) 日本京都肾脏病学系,日本京都,京都,京都,京都,京都,京都,京都,日本 D) 京都大学医学院生物医学数据智能系,日本京都 E) 京都大学医院医学信息学和管理规划部,日本京都 F) 京都大学医学院诊断病理学系,日本京都 H) Rise,药物开发数据智能平台小组,日本横滨 # 这些作者贡献者对这项工作做出贡献。 Running title: Glomeruli classification by deep learning Keywords: renal pathology, artificial intelligence, deep learning, collective intelligence Corresponding authors: Yasushi Okuno, Department of Biomedical Data Intelligence, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 881, FAX: +81-75-751-4881, E-mail: okuno.yasushi.4c@kyoto-u.ac.jp and Motoko Yanagita, Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan Phone: +81-75-751-3860, FAX: +81-75-751-3859, E-mail: motoy@kuhp.kyoto-u.ac.jp Abstract Background Automated classification of glomerular pathological findings is potentially beneficial in establishing an efficient and objective diagnosis in renal pathology.虽然先前的研究已经验证了用于对整体硬化和肾小球细胞增殖进行分类的人工智能(AI)模型,但诊断还需要其他一些肾小球病理学发现。这些人工智能模型与临床医生之间的合作是否能提高诊断性能还不得而知。在这里,我们开发了人工智能模型来对肾小球图像进行分类,以获得病理诊断所需的主要发现,并研究这些模型是否可以提高肾病科医生的诊断能力。方法
深部脑刺激是一种公认的治疗方法,据信它可以减少病理回路功能,使患有特定神经系统疾病的患者受益。另一方面,光遗传学方法能够对多种脑部疾病的动物模型中的神经回路功能进行有力的研究。OptoDBS 2015 将讨论 DBS 当前疗法的最新进展,并探讨如何更好地了解病理中的神经回路功能障碍,从而激发新的治疗方案。会议将特别强调 DBS 的新适应症,例如强迫症 (OCD)、抑郁症或成瘾症。前沿的光遗传学演示将与顶尖专家的临床研究交替进行。此次会议还将作为日内瓦大学医学院一项倡议的启动仪式,旨在促进 DBS 和光遗传学的研究。我们非常感谢 Assura 集团的 Divesa 基金会、Carigest SA 和日内瓦学术协会的慷慨支持,这让我们能够举办一场邀请杰出演讲嘉宾的会议。本次会议被瑞士州立兽医协会认定为为期一天半的动物实验继续教育。组织者:Pierre Pollak(日内瓦大学 - 日内瓦大学医院)Christian Lüscher(日内瓦大学 - 日内瓦大学医院)
鱼雷和水雷 1941 年 12 月 22 日,战时内阁会议决定在澳大利亚制造鱼雷,这项决定使该国的精密工程领域承担了一项极其艰巨的任务;由于鱼雷在现代军备中占据重要地位,这项任务具有极其重要的潜在意义。海权是英国在 19 世纪称霸世界强国的基石,因此鱼雷的研发本质上是英国的成就也就不足为奇了,尽管它最初并不是英国的发明。英国在鱼雷应用方面早期的领先地位很大程度上归功于指挥官(后来的海军上将)费舍尔的热情,但其他大国不久也进入了该领域。这种武器的巨大潜力首次显现于 1914 年至 1918 年的战争中,当时德国利用 U 型潜艇和鱼雷对商船造成了巨大损失,几乎让英国屈服。第一次世界大战后的二十年间,随着飞机投掷鱼雷方法的发展,鱼雷的破坏力进一步增强,不需要太多洞察力就能预测鱼雷在未来战争中的作用。2 英国的鱼雷制造主要由一家私人公司怀特黑德鱼雷公司(Whitehead Torpedo Company)和位于苏格兰格里诺克的海军部负责。 1941 年 7 月,海军部担心英国的鱼雷生产可能会因轰炸或入侵而受阻,甚至完全停止,因此开始研究为这种紧急情况提供替代中心的方法。英国的制造业已尽可能分散,但尚未在英国以外建立中心。1941 年 7 月 15 日,海军部在给澳大利亚海军委员会的一封信中表示:“如果鱼雷制造商能够在英国制造鱼雷,那将是一个相当大的优势。”