与其他几种NP变体不同,IO NP可以借助EMF引导到肿瘤部位,而无需固定靶向剂,例如肽,适体,蛋白质或抗体。但是,类似于其他NP类型,至关重要的是要覆盖IO NP的裸露表面(例如,使用聚合物或细胞膜)来防止调子化和聚集,并逃避巨噬细胞的吸收,以便它们可以到达肿瘤部位(图1A)[2]。使用IO NPS采用MDT有两种策略:直接与IO NP的药物共轭或与IO NP共同负载的DDS的药物共轭。使用IO NP,其他参数,例如血流速率,NPS的表面电荷或其尺寸也可能对NP的最终积累产生显着影响,而磁场强度在MDT中起关键作用。磁场梯度可能导致IO NP向最强磁力(F)的区域移动,如公式(4)[3]:
与其他几种 NP 变体不同,IO NP 可以借助 EMF 引导至肿瘤部位,而无需在表面固定肽、适体、蛋白质或抗体等靶向剂。然而,与其他类型的 NP 类似,必须在 IO NP 的裸露表面涂上涂层(例如,用聚合物或细胞膜)以防止调理作用和聚集,并避免被巨噬细胞摄取,这样它们才能到达肿瘤部位(图 1A)[2]。使用 IO NP 进行 MDT 有两种策略:将药物直接结合到 IO NP 上,或将药物结合到与 IO NP 共同负载的 DDS 上。虽然磁场强度在使用 IO NP 的 MDT 中起着关键作用,但其他参数(如血流速率、NP 的表面电荷或它们的大小)也会对 NP 的最终积累产生重大影响。磁场梯度可导致IO NPs向磁力最强的区域(F)移动,如方程(4)所示[3]:
•回顾早期TNBC中免疫疗法(IO)的开发•审查并总结了早期TNBC中最有影响力的IO研究•讨论在早期TNBC中IO中PCR与EFS之间的不断发展的关系,TNBC的TNBC•在SABCS 2023的早期研究中与IO的一些更新有关,将IN BERTIAS IN IN IN IN IN IN IN IN IN IN IN IN IN BERNATION IN IN BERNATION IN IN BERNATION IN BERECTION IN BELLAINS IN BEREATION IN BELLIDER IN BEREATITY IN IN BEREATION IN BEREATY IN IN BERE用于INBC。早期TNBC•审查早期TNBC患者实践算法中的更新
强大的国家对国际组织(IOS)的影响与组织使命和更广泛的成员的利益不符。尽管有这种霸权的影响,但其他成员国仍积极参与这些组织。在哪些条件下可以维持这种系统,对IO性能有什么影响?要回答这些问题,本文研究了投票股份,成本份额和代理专业知识之间的关系,其中IO内的项目财务模型。我们开发了一种游戏理论模型,即希望IO提供全球公共利益的会员之间的战略互动,这是一个希望通过IO促进其私人利益的霸权,而秘书处则对这两位校长负责。在均衡中,秘书处偏向其建议,以支持霸权的利益,即使其原始偏好有所不同。成员可以在有限的程度上容忍这种影响,以换取他们从霸主的财务贡献中享受的好处,以及IO提供的项目专业知识。提高了IO专业知识限制了秘书处“阴影”的推荐程度,并降低了更大的投票股票对霸权的价值。我们表明,IO专业知识在平衡中受到限制:仅当秘书处在工作中“太好”时,参与才能激励所有成员。我们的模型提出了一个统一的理论框架,以解释IO设计,加入,退出和改革的条件。
正常生命力:HR:100-180,RR:30-60,收缩BP:60-100 mmHg,Bg> 60 mg/dl复苏药物 - (确认浓度是指定的剂量体积肾上腺素剂量肾上腺素(1 mg/10 mg/10 ml填充的syringe syringe Q 3-3-5 m)0.0 0.0 0.0 0.000.000.100.000.100.1000.100.100.1000.1000.100。抗抗震V-FIB(或宽宽复合心动过速*)25 mg 0.5 ml Lidocaine(100 mg/5 ml)IV/IO iv/io(150 mg/3 mL)IV/IO,可击击的V-FIB(100 mg/5 ml)IV/IO,可击击V-fib(可震动的V-fib(或宽宽)(或宽宽)tachycardia*)6 mg 0.3 mg 0.3 mg/ig/ig/i.3 ml atropim/ltropiv/ltropine intropine(1 Ml)1 M ltropiv/1 M ltropopine(1 Ml)1 Ml a tropopine(1 Ml)1 M ltropiv心动过缓对肾上腺素无反应0.1 mg 1 ml *腺苷(6 mg/2 mL)IV/IO 1st剂量。0.1 mg/kg。 SVT(HR> 220)0.5 mg 0.2 ml *腺苷(6 mg/2 mL)IV/IO 2nd剂量。 SVT(HR> 220)1 mg 0.4 ml肾上腺素IV/IO(1 mg/10 ml)推剂 - 稀释剂量 - 稀释1 ml,用9 ml盐水= 10 mcg/1 ml 5 mcg 5 mcg 0.5 mc 0 mcg 0.5 ml(稀释)0.1 mg/kg。SVT(HR> 220)0.5 mg 0.2 ml *腺苷(6 mg/2 mL)IV/IO 2nd剂量。SVT(HR> 220)1 mg 0.4 ml肾上腺素IV/IO(1 mg/10 ml)推剂 - 稀释剂量 - 稀释1 ml,用9 ml盐水= 10 mcg/1 ml 5 mcg 5 mcg 0.5 mc 0 mcg 0.5 ml(稀释)
摘要背景转移性肾细胞癌 (mRCC) 中肿瘤特异性基因组改变的临床意义正在显现,一些研究表明 PBRM1 突变与免疫疗法 (IO) 反应之间存在关联。我们试图确定对血管内皮生长因子-酪氨酸激酶抑制剂 (VEGF-TKI) 和 IO 的不同反应的基因组预测因子。方法确定接受基因组分析的连续患者;包括接受 VEGF- TKI 或 IO 的患者。使用临床实验室改进修正案 (CLIA) 认证的检测方法 (Ashion Analytics;美国亚利桑那州凤凰城) 进行临床肿瘤正常全外显子组测序和肿瘤全转录组测序测试。在 VEGF-TKI 治疗患者群和 IO 治疗患者群中,比较了有临床益处 (CB;完全/部分缓解或病情稳定 >6 个月) 和无临床益处 (NCB) 患者的基因组结果。结果 91 名患者接受了基因组分析,58 名患者接受了 VEGF-TKI 和/或 IO 治疗。17 名患者接受了 VEGF-TKI 和 IO 的顺序治疗,结果 IO 队列中有 32 名患者,VEGF-TKI 队列中有 43 名患者。最常用的 IO 和 VEGF-TKI 是 nivolumab (66%) 和舒尼替尼 (40%)。整个队列中检测到的最常见变异是 VHL (64%)、PBRM1 (38%)、SETD2 (24%)、KDM5C (17%) 和 TERT (12%)。TERT 启动子突变与 IO 队列中的 NCB 相关 (p=0.038);转录组分析揭示了 TERT 下游的多个差异调控通路。发现 TERT 启动子突变和 PBRM1 突变是互相排斥的。虽然 PBRM1 突变在接受 IO 和 VEGF-TKI 治疗的 CB 患者中更为普遍,但未发现统计学上显着的关联。结论我们的分析发现,TERT 启动子突变可能是 IO 结果的负面预测因素,并且与 PBRM1 功能丧失突变相互排斥。
Emiconductor纳米晶体(NCS)是纳米级半导体中最广泛的研究,现在我们有一个固体的理论基础,使我们能够理解其大多数电子,光学和传输特性。大约四十年前,在S. I. Vavilov State Optical Institute和A. F. Io Q. Io Q. Io Q. Io Q. Io Q. Io Q. Io Q.同时,但在一半的世界之外,新泽西州默里山的贝尔实验室的路易斯·布鲁斯(Louis Brus)正在研究液体胶体中的半导体颗粒。这两条研究线在地理上和铁幕上分离,最终导致了两个小组的独立发展NC的独立发展以及对大小依赖性光学特性的理论解释。1 - 15直到1984年,美国人才得知俄罗斯人的e orts,当BRUS阅读Ekimov Papers的翻译并写信给作者时。在研究人员可以在铁幕倒塌以及在俄罗斯引入格拉斯诺斯特和Perestroika之后开始进行密集的信息交流之前,还必须再过5年。尽管半导体玻璃和半导体胶体分散体之间存在明显的差异,但它显示了
Johannes Damarowsky ( Johannes.damarowsky@wiwi.uni-halle.de ) 在信息系统研究中,对组织内的信息及其流动进行建模已经很成熟。然而,信息的一个视角尚未用标准化的模型符号来表示:组织内的信息对象生命周期。将客户主数据(如姓名、地址、电话号码、电子邮件地址、出生日期)等信息理解为信息对象 (IO) 是一种视角和工具,它与可以表示它的著名静态建模符号非常吻合,例如实体关系模型 (ERM) 或 UML 类图。UML 部署图或 The Open Groups ArchiMate 等符号可以指示客户主数据 IO 的数字表示位于组织 IT 基础架构中的何处,例如哪些数据库在哪些物理服务器上包含它。但是,IO 在其生命周期内的行为没有可用的专用建模符号。重要的 IO 生命周期行为至少包括:1) 初始创建(即创建新客户)、2) 读取(例如,店员读取客户数据)、3) 向其添加新数据字段(例如,第二个地址)、4) 修改现有数据(例如,更新电话号码)、5) 实例化(例如,在纸质表格上打印客户数据或在另一个系统中创建数字副本)、6) 移动、7) 读取或 8) 修改实例(例如,将包含客户数据的纸质表格交给阅读并签名的主管或将客户主数据发送给供应商)、9) 销毁物理或数字实例或初始创建的对象。在最先进的技术中,可以使用行为图(如 UML 活动、用例或序列图)和业务流程符号(如事件驱动流程链 (EPC) 或业务流程模型和符号 (BPMN))来建模 IO 操作,但 IO 生命周期本身并不是一个流程。因此,与 IO 生命周期相关的任务可以包含在多个流程模型中,并且可能仅间接或隐含地引用 IO,从而妨碍快速轻松地概览组织内 IO 的交互。这意味着机会成本,因为 IO 行为与组织信息、业务流程、合规性和信息安全管理相关。一种新颖的信息对象生命周期模型和符号 (IOLMN) 可以简化识别哪些部门记录或更新客户数据的过程,从而更容易识别错误信息的原因。还可以更容易地发现数据是否在多个部门独立记录和存储,这增加了数据存储不一致的风险。从合规性和信息安全的角度来看,可以更容易地识别哪些人对数据具有读取或写入权限,以及数据的实例在哪里创建以及它们可能最终在哪里。在发生安全漏洞的情况下,这样可以更轻松地识别哪些组织单位、流程和 IT 系统使用(读取、写入、修改等)IO 并可能受到影响。为了使 IOLMN 有用并轻松地实现对组织内 IO 的有用视角,它应至少包括 IO 属性、其(及其实例)生命周期行为、这些操作的时间和逻辑顺序和条件,以及涉及的人员、角色、部门、流程或 IT 系统及其对 IO 执行生命周期操作的授权。
• 海军陆战队空地特遣部队指挥官的意图和作战概念决定了 IO 目标和目的。海军陆战队空地特遣部队应确定友军和敌军信息、基于信息的流程和信息系统的薄弱环节和关键要素。这些关键要素的破坏或降级将支持部队完成任务,因此应被适当地作为目标。海军陆战队空地特遣部队的指挥和控制系统是敌方 IO 的重要目标。对友军至关重要的系统应受到保护。应控制、协调和管理媒体、信息和个人接触等影响,以使海军陆战队空地特遣部队受益。• 海军陆战队空地特遣部队的 IO 必须与上级和相邻指挥部的 IO 同步并整合。信息作战将在已由总司令 (CINC) 的和平时期区域和战区交战活动形成的战场中进行。在联合作战期间,联合部队指挥官 (JFC) 提供指导和指示,以开展 IO 以支持其任务、作战概念、目标和意图。海军陆战队空地特遣部队的信息作战计划在利用和挖掘上级部队的信息作战能力来支持海军陆战队空地特遣部队的同时,还必须支持联合部队指挥官的信息作战目标,以实现行动统一,并避免破坏联合部队指挥官的信息作战计划。
• 海军陆战队空地特遣部队指挥官的意图和作战概念决定了 IO 目标和目的。海军陆战队空地特遣部队应确定友军和敌军信息、基于信息的流程和信息系统的弱点和关键要素。这些关键要素的破坏或降级将支持部队完成任务,因此应被适当地作为目标。海军陆战队空地特遣部队的指挥和控制系统是敌方 IO 的重要目标。对友军至关重要的系统应受到保护。应控制、协调和管理媒体、信息和个人联系等影响,以利于海军陆战队空地特遣部队。 • 海军陆战队空地特遣部队的 IO 必须与上级和相邻指挥部的 IO 同步和整合。信息作战将在已由总司令 (CINC) 的和平时期区域和战区交战活动形成的战场中进行。在联合作战期间,联合部队指挥官 (JFC) 提供指导和指示,以开展 IO 以支持其任务、作战概念、目标和意图。海军陆战队空地特遣部队的信息作战计划在利用和挖掘上级部队的信息作战能力来支持海军陆战队空地特遣部队的同时,还必须支持联合部队指挥官的信息作战目标,以实现行动的统一,并避免破坏联合部队指挥官的信息作战计划。