摘要 - 专门的深度学习(DL)加速器和神经形态处理器的出现为将深度和尖峰神经网络(SNN)算法应用于医疗保健和生物医学应用的新企业带来了新的机会。这可以促进医学互联网系统(IoT)系统和护理点(POC)设备的进步。在本文中,我们提供了一个教程,描述了如何使用各种技术,包括新兴的回忆设备,可编程的门阵列(FPGA)和互补的金属氧化物半导体(CMOS),可用于开发有效的DL加速器,以解决各种诊断诊断,模式识别的诊断,信号过程和信号过程中的各种问题。此外,我们探讨了尖峰神经形态处理器如何补充其DL对应物以处理生物医学信号。该教程通过应用于医疗保健领域的大量神经网络和神经形态硬件的大量文献进行了研究。我们通过执行将传感器融合信号处理任务与计算机视觉相结合的传感器融合信号处理任务来标记各种硬件平台。在推理潜伏期和能量方面进行了专用神经形态处理器和嵌入AI加速器的比较。最后,我们对领域的分析进行了分析,并分享了各种加速器和神经形态处理器引入医疗保健和生物医学领域的优势,缺点,挑战和机遇的观点。
肺癌(LC)是全球健康问题,也是与癌症相关死亡率的主要原因之一。根据国际癌症研究机构(IARC)发布的全球癌症统计报告,肺癌的发病率和死亡率仍然很高,占2020年全球癌症死亡的18%(1-3)。 手术,放疗和化疗一直是近年来肺癌治疗的护理标准。 但是,靶向疗法和免疫疗法的临床使用一直在增加。 重点已转移到检测与肿瘤发育相关的驱动基因,例如EGFR,KRAS和MET,并识别这些基因调节的细胞生长或细胞凋亡的信号传导途径。 针对这些基因的靶向治疗显着提高了肺癌患者的中间存活率。 免疫疗法现在是NSCLC中晚期或转移性突变阴性驱动基因的患者的第一线治疗。 不幸的是,肿瘤复发通常会导致对最初有效的药物的抗性(4)。 随着新兴的肿瘤微环境(TME)的加热概念,越来越多的证据表明,TME促进了癌症的进展,并可能介导治疗性耐药性。 与肺癌相关的疗法和研究正在逐渐从仅关注肿瘤细胞本身到肿瘤微环境研究的更广泛的领域。 癌症的发展与肿瘤微环境的生理状态密切相关,该状态可以调节肿瘤细胞繁殖并增强对治疗的抵抗力。根据国际癌症研究机构(IARC)发布的全球癌症统计报告,肺癌的发病率和死亡率仍然很高,占2020年全球癌症死亡的18%(1-3)。手术,放疗和化疗一直是近年来肺癌治疗的护理标准。但是,靶向疗法和免疫疗法的临床使用一直在增加。重点已转移到检测与肿瘤发育相关的驱动基因,例如EGFR,KRAS和MET,并识别这些基因调节的细胞生长或细胞凋亡的信号传导途径。针对这些基因的靶向治疗显着提高了肺癌患者的中间存活率。免疫疗法现在是NSCLC中晚期或转移性突变阴性驱动基因的患者的第一线治疗。不幸的是,肿瘤复发通常会导致对最初有效的药物的抗性(4)。随着新兴的肿瘤微环境(TME)的加热概念,越来越多的证据表明,TME促进了癌症的进展,并可能介导治疗性耐药性。与肺癌相关的疗法和研究正在逐渐从仅关注肿瘤细胞本身到肿瘤微环境研究的更广泛的领域。癌症的发展与肿瘤微环境的生理状态密切相关,该状态可以调节肿瘤细胞繁殖并增强对治疗的抵抗力。TME是一个层次结构化的生态系统,其中包含各种细胞类型,从肿瘤相关的巨噬细胞(TAM),免疫细胞和与癌症相关的纤维细胞(CAFS)(CAFS),以及血液对比,神经血管,神经血管,细胞外基质,以及相关的构成构成(5 - 5 - 5 - 5 - 5 - 5 - 5-7)。特别是,免疫细胞在TME中起重要作用,其中包括促进肿瘤生长,并在宿主免疫监测和消除肿瘤癌细胞中起关键作用(8)。根据肿瘤类别,癌细胞的内在特征,肿瘤阶段和个别患者的特征,TME变化的细胞组成和功能状态。这些细胞的作用可以是关于肿瘤的相互作用,并在宿主免疫监视和消除肿瘤癌细胞中起关键作用(9)。共同调节区域免疫效应,最终调节
肠道微生物组在环境与宿主之间的交集,能够改变对疾病相关的暴露和刺激的宿主反应。这在肠道微生物与免疫系统相互作用的方式中很明显,例如,通过调节免疫反应或影响免疫细胞群体及其介体的影响,支持早期的免疫成熟,影响药物效率。许多因素在日常生活中调节肠道生态系统动力学,我们才刚刚开始实现基于微生物组干预措施的治疗和预防潜力。这些方法的应用,目标和作用机制各不相同。有些人修改了整个社区,例如营养方法或粪便菌群移植,而另一些人,例如噬菌体疗法,益生菌和益生元,诸如靶标特异性类群或菌株。在这篇综述中,我们评估了基于微生物组的干预措施的实验证据,特别关注其临床相关性,生态效应和免疫系统的调节。
摘要。运动员的微生物组在研究人员中最感兴趣,因为结肠的微生物组成在养分的吸收,维生素的合成和宿主体内的免疫反应中起着关键作用。这篇综述的目的是研究高性能运动员中的肠道微生物群与低活动性生活方式的人之间的关系,以及这些变化对与运动员的身体表现和运动表现相关的微生物代谢产生的影响。总共分析了42篇研究论文,其中包括11项专业研究,研究了不同类型的强烈体育活动对肠道微生物组成的影响,以及19项研究的重点是个人细菌和身体性能的相关性。肠道微生物组成已被发现与运动表现有关,并且可能会提高性能和恢复。体育活动已被证明会增加α多样性和微生物代谢产物,例如短链脂肪酸。运动之间的α多样性没有显着差异。运动员的微生物组的特征是较高量的短链脂肪酸,这可以是运动过程中的能量底物。短链脂肪酸的产生与直肠菌群spp有关。,粪便核酸杆菌。运动员的微生物组也证明了Prevotella spp。的存在,在运动员中,这可能与表现相关。已经表明,运动员中的Veillonella antypica的存在与耐力正相关。尽管发现这一发现是矛盾的,但专门从事各种运动的运动员的运动成就和健康与诸如Akkermansia Municiphila,Faecalibacterium prausnitzii,Eubacterium cantale,Eubacterium thacterium contale,Roseburia hominis,faecalibacterium prausnitzii有关。此外,已经表明,肠道的微生物组成和酶之间存在联系,这被认为是与运动员健康相关的代谢产生的关键
结肠腺癌(COAD)是第三常见的癌症,是全球癌症死亡的第二大主要原因,这已成为全球公共卫生挑战(1)。随着癌症检测技术的发展,早期诊断的率有所提高,但是COAD的诊断迅速转移到年轻,更高级的阶段(2)。 开发从息肉到腺癌的COAD需要十多年的时间,这一长期进展为干预提供了防止其发展为高级阶段的机会(3)。 近年来,高通量测序技术和生物信息学的快速发展促进了COAD的探索(4,5)。 因此,从生物信息学分析的肿瘤分子靶标的角度了解COAD的发病机理对于治疗和预防COAD具有很大的意义。 细胞外基质(ECM)是由各种蛋白质组成的复杂结构,该结构通过调节细胞间串扰来调节生物学功能(6-8)。 ECM是肿瘤微环境(TME)的重要组成部分,其异常表达促进了肿瘤的形成,进展和转移(9,10)。 临床病理学分析证实,ECM在肿瘤患者中的过度沉积与预后不良有关(11,12)。 最近,高通量测序分析表明,与ECM相关的基因在肿瘤进展过程中异常表达(13,14)。 ECM的积累诱导缺氧和代谢应激,进而激活肿瘤中的抗凋亡和药物抗性途径(15)。随着癌症检测技术的发展,早期诊断的率有所提高,但是COAD的诊断迅速转移到年轻,更高级的阶段(2)。开发从息肉到腺癌的COAD需要十多年的时间,这一长期进展为干预提供了防止其发展为高级阶段的机会(3)。近年来,高通量测序技术和生物信息学的快速发展促进了COAD的探索(4,5)。因此,从生物信息学分析的肿瘤分子靶标的角度了解COAD的发病机理对于治疗和预防COAD具有很大的意义。细胞外基质(ECM)是由各种蛋白质组成的复杂结构,该结构通过调节细胞间串扰来调节生物学功能(6-8)。ECM是肿瘤微环境(TME)的重要组成部分,其异常表达促进了肿瘤的形成,进展和转移(9,10)。临床病理学分析证实,ECM在肿瘤患者中的过度沉积与预后不良有关(11,12)。最近,高通量测序分析表明,与ECM相关的基因在肿瘤进展过程中异常表达(13,14)。ECM的积累诱导缺氧和代谢应激,进而激活肿瘤中的抗凋亡和药物抗性途径(15)。此外,ECM的高密度阻碍了免疫细胞的内化,这会影响肿瘤免疫疗法的作用(16-18)。因此,基于与ECM相关基因的预后模型将为预测COAD患者的复发提供基础。瘦素是瘦素基因(LEP)的糖蛋白产物。流行病学研究支持LEP与COAD风险增加有关(19)。研究表明,COAD组织中LEP mRNA的表达水平上调,这与COAD患者的预后不良有关(20,21)。周围神经形成复杂的肿瘤微环境,由多种细胞类型和因子组成,包括神经生长因子(NGF)。NGF在几种实体瘤的生长,侵袭和转移中起重要作用。Lei等。 发现,胰腺癌细胞分泌的NGF诱导了Schwann细胞的自噬,这反过来参与了胰腺肿瘤的增殖和转移(22)。 Hayakawa等。 表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。 procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。 PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。 他等人。 证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。 我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床高度表达Lei等。发现,胰腺癌细胞分泌的NGF诱导了Schwann细胞的自噬,这反过来参与了胰腺肿瘤的增殖和转移(22)。Hayakawa等。 表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。 procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。 PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。 他等人。 证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。 我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床高度表达Hayakawa等。表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。他等人。证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床在这项研究中,我们鉴定了与WGCNA和Lasso-Cox回归相关的三个与ECM相关的基因(LEP,NGF和PCOLCE2)。
持续感染高危型人乳头瘤病毒 (HR-HPV) 以及随后的病毒癌蛋白 E6 和 E7 上调被认为是宫颈癌变中的关键分子事件 ( 1 , 2 )。这些癌蛋白会干扰关键宿主肿瘤抑制蛋白的功能,导致恶性转化。具体来说,E6 会促进 p53 的降解,p53 是一种对程序性细胞死亡至关重要的肿瘤抑制因子,而 E7 则会抑制通常调节细胞周期进程的视网膜母细胞瘤蛋白 (pRb) ( 3 , 4 )。p53 和 pRb 功能的破坏会导致染色体不稳定和癌症发展 ( 5 )。在各种 HR-HPV 类型中,HPV16 最为常见(其次是 HPV18),是全球 50% 以上宫颈癌病例的诱因 ( 6 – 8 )。 HPV 感染发生在宫颈上皮未分化的基底细胞中,病毒早期蛋白 E1、E2、E6 和 E7 在此细胞中表达水平较低(9)。随着被感染细胞的分化,病毒晚期蛋白 L1 和 L2 产生,用于衣壳的形成和病毒颗粒的组装。E4 蛋白通过与宿主细胞骨架结合协助病毒颗粒的释放(10,11)。高免疫原性的 L1 蛋白的产生受宿主蛋白和表观遗传修饰的调控,确保其仅在分化细胞中表达,从而逃避免疫检测(12)。HPV16 L1 蛋白及其相关 mRNA 在低度宫颈病变和增殖性感染中可检测到,但其缺失与高度病变高度相关(13,14)。虽然 L1 编码序列在转化细胞中保持完整,但衣壳蛋白不会合成(15)。尽管 HR-HPV 感染是宫颈癌的必要前兆,但只有一小部分感染者会发展为宫颈癌 ( 16 , 17 )。目前的 HPV DNA 检测不足以准确识别需要阴道镜检查的 HR-HPV 阳性女性,因为许多感染都是暂时性的 ( 18 )。目前建议对 HPV16 和 HPV18 进行基因分型,并结合细胞学检查进行宫颈癌筛查 ( 19 );然而,需要更特异的生物标志物来分类 HPV16 或 HPV18 阳性的女性,并减少不必要的阴道镜转诊 ( 20 , 21 )。宿主基因和 HPV 基因的甲基化已得到广泛研究,并被证实与宫颈异常有关 ( 22 , 23 )。甲基化修饰,例如 L1 基因内的 CpG 位点甲基化,可以控制该基因的表达,该基因在转化的宫颈细胞中经常被沉默。亚硫酸氢盐测序报告称 3' L1 基因区域的甲基化水平较高,表明其在控制 L1 表达方面具有潜在作用 ( 24 , 25 );然而,亚硫酸氢盐测序和直接测序等方法可能导致临床样本中甲基化水平估计不准确。焦磷酸测序,一种更准确的定量方法,已用于测量 HPV DNA 甲基化,揭示了各种 HPV 类型的 L1 和 L2 区域的高甲基化( 26 , 27 )。最近的研究表明,L1 基因甲基化可以区分宫颈上皮内瘤变 3 (CIN3) 和浸润性宫颈癌( 26 , 28 )。
放射线学利用计算算法从MRI扫描中提取定量成像特征,从而更深入地评估肿瘤异质性。在这项研究中,使用T2加权成像(T2WI)和扩散加权成像(DWI)分析了肿瘤内和周围区域的特征。该研究评估了不同的周围距离,发现与其他构型相比,T2WI中的3mm周围区域表现出优异的预测精度。这些放射素特征与临床参数(例如性别和MRN阶段)的整合导致了优化的预测模型。研究发现,结合周围放射线特征的模型优于仅依靠肿瘤内特征的模型。此方法在区分LVI的存在方面超过了常规成像,提供了一种非侵入性且高度准确的诊断工具。
Course Coordinator(s): Dr YQ Song, School of Biomedical Sciences (Tel: 3917 9245; Email: songy@hku.hk ) Delivery Mode of Lectures: Face-to-face Lecture Venue: Lecture Theatre 1, G/F, William MW Mong Block, No.21 Sassoon Road期末考试:2025年5月23日,星期五(9:30 - 11:30 AM)201号房间,HKU Main Campus Main Building21 Sassoon Road期末考试:2025年5月23日,星期五(9:30 - 11:30 AM)201号房间,HKU Main Campus Main Building