肺癌(LC)是全球健康问题,也是与癌症相关死亡率的主要原因之一。根据国际癌症研究机构(IARC)发布的全球癌症统计报告,肺癌的发病率和死亡率仍然很高,占2020年全球癌症死亡的18%(1-3)。 手术,放疗和化疗一直是近年来肺癌治疗的护理标准。 但是,靶向疗法和免疫疗法的临床使用一直在增加。 重点已转移到检测与肿瘤发育相关的驱动基因,例如EGFR,KRAS和MET,并识别这些基因调节的细胞生长或细胞凋亡的信号传导途径。 针对这些基因的靶向治疗显着提高了肺癌患者的中间存活率。 免疫疗法现在是NSCLC中晚期或转移性突变阴性驱动基因的患者的第一线治疗。 不幸的是,肿瘤复发通常会导致对最初有效的药物的抗性(4)。 随着新兴的肿瘤微环境(TME)的加热概念,越来越多的证据表明,TME促进了癌症的进展,并可能介导治疗性耐药性。 与肺癌相关的疗法和研究正在逐渐从仅关注肿瘤细胞本身到肿瘤微环境研究的更广泛的领域。 癌症的发展与肿瘤微环境的生理状态密切相关,该状态可以调节肿瘤细胞繁殖并增强对治疗的抵抗力。根据国际癌症研究机构(IARC)发布的全球癌症统计报告,肺癌的发病率和死亡率仍然很高,占2020年全球癌症死亡的18%(1-3)。手术,放疗和化疗一直是近年来肺癌治疗的护理标准。但是,靶向疗法和免疫疗法的临床使用一直在增加。重点已转移到检测与肿瘤发育相关的驱动基因,例如EGFR,KRAS和MET,并识别这些基因调节的细胞生长或细胞凋亡的信号传导途径。针对这些基因的靶向治疗显着提高了肺癌患者的中间存活率。免疫疗法现在是NSCLC中晚期或转移性突变阴性驱动基因的患者的第一线治疗。不幸的是,肿瘤复发通常会导致对最初有效的药物的抗性(4)。随着新兴的肿瘤微环境(TME)的加热概念,越来越多的证据表明,TME促进了癌症的进展,并可能介导治疗性耐药性。与肺癌相关的疗法和研究正在逐渐从仅关注肿瘤细胞本身到肿瘤微环境研究的更广泛的领域。癌症的发展与肿瘤微环境的生理状态密切相关,该状态可以调节肿瘤细胞繁殖并增强对治疗的抵抗力。TME是一个层次结构化的生态系统,其中包含各种细胞类型,从肿瘤相关的巨噬细胞(TAM),免疫细胞和与癌症相关的纤维细胞(CAFS)(CAFS),以及血液对比,神经血管,神经血管,细胞外基质,以及相关的构成构成(5 - 5 - 5 - 5 - 5 - 5 - 5-7)。特别是,免疫细胞在TME中起重要作用,其中包括促进肿瘤生长,并在宿主免疫监测和消除肿瘤癌细胞中起关键作用(8)。根据肿瘤类别,癌细胞的内在特征,肿瘤阶段和个别患者的特征,TME变化的细胞组成和功能状态。这些细胞的作用可以是关于肿瘤的相互作用,并在宿主免疫监视和消除肿瘤癌细胞中起关键作用(9)。共同调节区域免疫效应,最终调节
巴基斯坦的马铃薯 ( Solanum tuberosum L.) 种植面临挑战,其中由立枯丝核菌 (Rhizoctonia solani Kühn) 引起的黑痂病是一个严重问题。化学杀菌剂等传统方法可以部分控制该病,但缺乏有效的解决方案。本研究探讨了生物肥料和菊科杂草生物质土壤改良剂在控制该病害方面的潜力。选择了两个马铃薯品种 Karoda 和 Sante,并单独或与苍耳生物质一起测试了两种生物肥料 Fertibio 和 Feng Shou。阳性对照中的病害压力最高,化学杀菌剂可显著降低病害压力。苍耳生物质也显著降低了病害发生率。Fertibio 的效果优于 Feng Shou。施用生物肥料和生物质可以改善植物的生理生化特性。块茎重量、光合色素、总蛋白质含量和抗氧化酶(CAT、POX 和 PPO)呈正相关。Fertibio 和 S. marianum 生物质的联合应用可有效控制黑斑病。这些环保替代品可以增强疾病管理和产量。未来的研究应探索它们的成本效益、商业化和安全性。
成功地开发了一条与非海洋可生物降解钓鱼线相同程度的淋巴结伸长率,并展示了海洋生物降解性。钓鱼线在遗弃后沉入海底时会加速。实际上在实际海洋区域的现场测试中确认了钓鱼线的降解性。
癌症是一种非常侵略性的疾病,也是人类最重要的健康问题之一,每年造成许多死亡。其病因很复杂,包括遗传,与性别相关,传染病,营养不良,免疫失衡,生活方式,包括饮食因素,污染等。癌症患者也经常作为化学疗法和放疗的副作用,并且容易感染,这进一步促进了肿瘤细胞的扩散。近几十年来,微生物群在癌症中的作用和重要性已成为人类生物学研究中的热点,从而汇总了肿瘤学和人类微生物学。除了它们在不同癌症的病因中的作用外,微生物还与肿瘤细胞相互作用,并且可能参与调节其对治疗的反应以及抗肿瘤疗法的毒性。在这篇综述中,我们介绍了微生物群在癌症中的作用的最新信息,重点是干扰抗癌治疗和抗癌潜力。
奇异果藤蔓衰落综合征(KVD)的特征是严重的根系障碍,导致冠层不可逆地枯萎。植物通常会因第一个地上症状的出现而迅速崩溃,即使在接下来的季节也没有恢复。自2012年首次爆发以来,综合征在意大利的不同领域(意大利的不同地区)一直对奇异果产量产生负面影响。迄今为止,尚未找到一个独特的,常见的因果因素,综合征称为多因素。在本文中,我们研究了与在三种不同的地下矩阵/隔室(土壤,根际和根)中开发KVD相关的整个生物群落(真菌,细菌和Oomycetes)。采样。要解决综合征的多因素性质,并研究了非生物因素在塑造这些群落中的潜在作用,还对土壤进行了物理化学分析。这项研究调查了组成微生物组以及生物和非生物因素之间的分类群体之间的关联。营养不良被认为是塑造KVD微生物群落的驾驶事件。从这项研究中获得的结果突出了卵属植物属的作用,这主要导致了卵菌的组成,尽管它也存在于健康的基质中。与KVD相关的根际群落是由不植物过程驱动的。细菌和真菌群落都导致属的丰富度高,并且与采样位点和基质高度相关,并强调了多个位置在地理上和空间上采样的重要性。此外,对患病的根际对关联网络的分析表明,存在潜在的跨王朝竞争,这是腐生,卵形和细菌之间植物来源碳的潜在竞争。
在过去的几十年中,全球自身免疫性疾病的流行迅速增长。越来越多的证据将肠道营养不良与各种自身免疫性疾病的发作联系起来。由于高吞吐量测序技术的显着进步,肠道微生物组研究的数量有所增加。但是,它们主要集中在细菌上,因此我们对人肠道微生物生态系统中真核微生物的作用和意义的理解仍然非常有限。在这里,我们选择了Graves疾病(GD)作为一种自身免疫性疾病模型,并研究了肠道多杀伤力(细菌,真菌和生物学家)从健康控制,患病和药物治疗的康复患者中的微生物群落。结果表明,GD中的生理变化增加了细菌社区组装的分散过程,并增加了真核社区组装的均匀选择过程。恢复的患者与健康对照组具有相似的细菌和原生动物,但没有真菌的社区组装过程。此外,与细菌相比,真核生物(真菌和生物学家)在肠道生态系统功能中起着更重要的作用。总体而言,这项研究简要了解了真核生物对人类肠道和免疫稳态的潜在贡献及其对治疗干预措施的潜在影响。
生物识别是指个人独特的身体和行为特征,例如指纹、面部特征、声音或打字模式。生物识别在用于安全和安保目的的人工智能应用中尤为重要,因为它们提供了一种可靠且方便的识别和验证个人的方法。人工智能技术具有快速处理和分析生物特征数据的强大能力。
糖基化在包括糖尿病在内的蛋白质功能和疾病进展中起着至关重要的作用。这项研究进行了全面的糖蛋白分析,比较了健康的志愿者(HV)和DM样品,并鉴定出19,374肽和2,113种蛋白质,其中11104种是糖基化的。总共将287种不同的聚糖映射到3,722个糖基化的肽,揭示了HV和DM样品之间糖基化模式的显着差异。统计分析确定了29个显着改变糖基化位点,在DM中上调了23个,在DM中下调了6个。值得注意的是,在DM中,在Prosaposin的位置215处的Glycan HexNAC(2)Hex(2)FUC(1)在DM中显着上调,标志着其首次报道的与糖尿病的关联。机器学习模型,尤其是支持向量机(SVM)和广义线性模型(GLM),在基于糖基化特征(Glycans,糖基化蛋白质和糖基化位点)区分HV和DM样品时,可以在区分HV和DM样品时获得高分类精度(〜92%:96%)。这些发现表明,改变的糖基化模式可能是糖尿病相关病理生理和治疗靶向的潜在生物标志物。
能源生产沙漠中晴朗的天空和高水平的太阳能是发电的理想选择。摩洛哥的NOOR太阳能电厂是世界上最大的浓缩太阳能(CSP)开采大型石油和天然气储量。例如,沙特阿拉伯拥有第二大石油储备,卡塔尔拥有第三大已验证的天然气储量。两个国家都位于阿拉伯沙漠中。可以转移定居水供应,以使城市在沙漠中生长。例如,埃及的Sharm El Sheikh以其水上运动和水肺潜水而闻名。但是,由于该地区缺乏淡水,两家政府拥有的淡化公司正在运营,需要大量的能量使用。该地区依靠旅游业,因此需要游泳池和酒店的水。该市计划在2045年根据联合国栖息地计划获得无污染的计划。旅游业许多沙漠国家现在正在利用景观来产生游客的收入。活动包括骆驼游乐设施,沙丘越野车和砂板。尽管位于沙漠中,但阿拉伯联合酋长国的迪拜市仍有许多景点。其中包括一个水族馆,一个室内滑雪坡和一个水上乐园。
这项调查的主要目的是确定尼泊尔莫朗区不同海拔不同森林林分之间的生物量和碳分布模式。值得注意的是,估计尼泊尔东森林相对较少的碳储备和生物量。估计五个不同森林地点的生物量和碳库存的数据,即。Bhaunne,Raja -Rani,Murchungi,Adheri和Sagma位于平均海平面100-1300m之间,是通过随机选择的库存图获得的。总共建立了50个样品图,在不同的高度区域的五个森林林座中建立。在每个森林地点,布置了10个20m×20m尺寸的样品图,以测量树木。在灌木和草药的情况下,分别建立了5m×5m和1m×1m的嵌套图。通过应用异形方程来促进树木和灌木的生物量的计算,而草药的生物量通过收获方法确定。使用灰分含量法估计植物材料中的碳浓度。对Bhaunne,Raja -Rani,Murchungi,Adheri和Sagma Forest地点的架子生物量的全面分析是:815.86 mg HA -1,414.19 mg HA -1,606.81 mg Ha -1,519.20 mg ha -1,519.20 mg ha -1,以及在29.96 mg a -1中的住所,分别是分别的。森林),在Bhaunne地点(低海拔森林)。同样,与Sagma遗址相比,在Bhaunne,Raja-Rani,Murchungi和Adheri站点的草药生物量中观察到了值得注意的变化。根据林分生物量的变化,森林站点的碳库存也显示出相同的趋势,但值在140.19 mg C HA -1至333.63 mg C HA -1之间,sagma位置的最小值范围为Bhaunne站点的最小值。弗里德曼测试的应用揭示了Murchungi和Sagma位点之间的树木生物量以及Adheri和Sagma位点之间的灌木生物量的统计学显着变化。本研究在碳管理上有助于理解森林生态系统。