• Atomic Mass Unit (amu) • AWS: Amazon Web Services • Bump Plating Photoresist (BPR) • Chip to Wafer (CtW) • CL: Confidence Level • CMOS: Complementary metal-oxide semiconductor • Commercial Off The Shelf (COTS) • Complementary Field Effect Transistor (CFET) • ConOps: Concept of Operations • continuous wave (CW) • DDD: Displacement Damage Dose •设计技术合作/合成技术合作选择(DTCO/STCO)•动态随机访问记忆(DRAM)•EDAC:错误检测和校正•EEEE•EEEE•EEEE:电气,电子,电子力学和电流和电流和电子光学和电力•嵌入式动态随机访问记忆(EDRAM)晶体管(FEFET)•铁电随机访问存储器(FERAM)•铁电隧道连接(FTJ)•FET:FET:现场效应晶体管•FPGA•FPGA:现场编程的门阵列•完全自我对齐(FSAV)•GrandAccélérateurNational d'ions d'ions d'ions d'Ions d'ions lourds lourds(Ganil)
完整作者列表:Kuschlan,Stefano; CNR 微电子与微系统研究所 Chiarcos,Riccardo;东皮埃蒙特大学阿梅代奥阿伏伽德罗 - 亚历山德里亚校区,DISIT Laus,Michele;东皮埃蒙特大学,DISIT Perez-Murano,Francesc;巴塞罗那微电子研究所 Llobet,Jordi; IMB CNM 费尔南德斯-雷古莱兹,玛尔塔;巴塞罗那微电子研究所,纳米制造 Bonafos,Caroline; CEMES Perego,米歇尔; CNR,微电子与微系统研究所 Seguini,Gabriele; CNR、IMM、玛瑙布里安扎德米奇利斯单位、马可; CNR 微电子与微系统研究所 Tallarida,Graziella;国家研究委员会微电子与微系统研究所,Agrate Brianza 单位
我们展示了用于样品合成、制备和改性的设备,这些设备可在乌普萨拉大学 Tandem 实验室国家研究基础设施的离子注入机设施中使用中能离子束进行原位研究。集成仪器可实现受控薄膜合成、改性和特性分析,适用于研究近表面过程,例如薄膜生长、相变、氧化、退火、催化或离子注入。我们描述了可用的仪器及其规格,并展示了四个演示实验,特别关注获得的原位能力,涉及 1) 薄膜的蒸发和热合金化 - 镍硅化物 2) 反应磁控溅射和受控氧化 - 光致变色 YHO 3) 溅射和低能注入 - 钨中的氢和 4) 敏感系统的表面清洁 - 自支撑硅膜。
不同生态系统中有毒重金属的普遍存在提出了环境挑战,需要及时解决以维护人类健康和生态平衡。开发用于保护废水以保护水居民和人类生命的方法是一种公开义务。重金属离子水污染是最严重的环境问题之一。这是不受限制的,不受管制的工业废水以及农业和灌溉排水方案,这些方案将污水直接倒入水体中。这种不负责任的废物处理方法导致了超过建议安全限制的水污染物的浓度。例如,钢铁部门释放铅离子。铅也从酸电池,含铅汽油的燃烧,四乙基铅作为汽油中的抗旋转剂的非法使用中释放到环境中,
体外诊断医疗装置*液相色谱串联质谱系统可以在生物基质中进行各种化合物的体外定量。本文提供的绩效数据仅是出于说明目的,可能不能代表实验室将获得的绩效。Thermo Fisher Scientific不建议使用其系统对本文描述的分析物进行分析。在单个实验室中的性能可能与由于因素,包括但不限于实验室方法,使用的材料,操作员技术和系统状况的因素可能不同。实验室有责任验证其打算在其设施中使用并遵守所有适用法律和政策的任何测定法。
摘要:在这项工作中,使用生物聚合物壳聚糖和天然粘土来获得复合材料。这项研究的总体目的是通过添加粘土来改善纯壳聚糖珠的性能(孔隙率,热稳定性和密度),并获得基于壳聚糖的复合材料,以使用蒙古资源从水溶液中吸附重金属,并使用蒙古资源来吸附重金属,并研究吸附机制。天然粘土用酸和热进行预处理以去除杂质。将壳聚糖和预处理的粘土以不同的比率(8:1,8:2和8:3)混合,以获得化学加工,以获得复合珠以吸附铬离子。研究了Cr(III)和Cr(VI)的吸附,这是溶液pH,时间,温度,铬溶液的初始浓度和复合珠的质量的函数。发现,从壳聚糖的混合物中获得的复合珠和质量比为8:1和8:2的粘土分别具有最高的吸附能力(23.5和17.31 mg·g -g -1),Cr(iii)和Cr(iii)和Cr(vi)的吸附能力分别为最佳条件。使用XRD,SEM -EDS,BET和TG分析研究了通过将壳聚糖和粘土混合为8:1和8:2的复合材料的性质。根据XPS分析结果讨论了吸附机制。可以证实,铬离子以其原始形式吸附,例如Cr(iii)和Cr(VI),而无需进行氧化或还原反应。此外,在吸附过程中,CR(III)和Cr(VI)与复合珠的羟基和氨基群有关。吸附过程的动力学,热力学和等温分析表明,壳聚糖/粘土复合珠与CR(III)和Cr(VI)离子之间的相互作用可以视为二阶入学热反应,因此可以使用langmuir iSotherm模型来评估吸附。可以得出结论,复合珠可以用作去除铬离子的吸附剂。
石油运营最大的问题之一是材料的腐蚀,这导致了巨大的财务损失。金属工业结构经常暴露的环境使腐蚀过程更容易[1-3]。石油行业使用酸溶液来泡菜,酸清洁和降钢钢组件[4,5]。为防止碱金属腐蚀,添加酸化抑制剂。预防腐蚀的潜在疗法是使用有机抑制剂[6]。这些有机抑制剂通常在静电上与金属表面结合或在沉积在那里之前形成的共价键(化学吸附)(物理吸附)。这些物质产生了不溶性复合物或被吸附到金属表面上,阻塞了活性腐蚀位点[7]。先前的研究表明,吸附主要取决于P-或D-ELECTRON和该分子的杂原子,这会导致更多的抑制剂分子与低碳钢表面结合。大多数具有高电子密度杂原子的有机化合物,例如用作吸附位点的磷,硫,氮和氧气,是有效的金属腐蚀抑制剂[8-11]。酰胺化合物作为有机腐蚀抑制剂的有效性最近已成为众多研究的主题[12-14]。然而,对使用金属腐蚀抑制剂的兴趣已经扩展了简单的预防,以包括抑制剂的效力水平。
诺贝尔化学奖(2019年给予)公认的锂离子电池(LIB)技术是无化石全球电源的基础。其高度吸引人的特性,例如上等能量密度,功率密度,出色的速率能力和较长的周期寿命,使其在各种设备中有用,包括便携式电子,电动汽车,储能系统,机器人技术,军事设备,紧急系统和医疗设备[1-3]。自1991年首次亮相以来,现代Libs通过以每年7-8 WH/kg的速度提高能量密度来提高电池的性能[4]。实现“碳中立性”的普遍概念促进了锂离子电池的大量研究和开发,锂离子电池是领先的干净二次电池技术。
血液中的抽象钾浓度对于患有慢性肾脏疾病的大量患者群体起着至关重要的作用。连续监测血钾对于降低相关风险至关重要。基于家庭护理的小型测量套件将提高患者安全性并降低医疗费用。当前,离子选择电极(ISE)正在进化用于血液钾监测的应用。常规ISE是电位计量学或导电测量值。常规ISE需要一个参考电极来比较离子浓度的变化。这些参考电极由于不适当的填充溶液,连接堵塞和泄漏而随时间漂移,因此限制了传感器的寿命。在本文中,我们使用基于阻抗的测量来开发了一种无参考的固态ISE,以感知钾离子以克服漂移问题。使用阻抗测量评估钾选择性膜上钾选择性膜的灵敏度和选择性。开发的ISE在钾溶液(KCL)中以各种浓度扫描。另外,通过将电极存储在1 mM KCl溶液中40天来评估所提出的钾选择性电极的寿命。因此,微型钾选择性电极可以帮助那些需要连续监测血液钾水平的患者。
摘要:提出了一种方法和必要的分析设备,用于从土壤和水性培养基中的硫酸盐离子进行质量定量测定,并提出了水性培养基中的硫酸盐离子,其中包括以下事实,即将已知量的2-水性氯化氯化物含有氯化氢添加到分析样品的等分样品中。所得的不溶性硫酸钡化合物降低了氯化钡的初始浓度。在特殊设计的火焰分光光度法分析仪上确定溶液中剩余的氯化钡量。这使您可以计算与钡相关的硫酸盐离子的量,该硫酸盐是由设备程序自动执行的。通过所提出的水样中提出的方法可靠确定的硫酸盐离子浓度范围为10至100 mg/dm 3。可靠确定的从0.2至2.4 c(1/2SO4)mol/dm 3(从10到115 mg/dm 3)的土壤提取物中硫酸盐离子的浓度范围。必须用蒸馏水多次将较高浓度的硫酸盐离子稀释。该方法使确定水土壤提取物,淡水储层和河流,地下来源,自来水,沉积物,被工业企业的硫酸排放污染的沉积物是可能的。该方法非常简单,准确且富有成效。该方法由国家乌拉尔研究所(MVI-66373620-007-2018)认证,并由联邦技术法规和计量署(RosStandart)批准,作为No.253.0080/ra。RU.311866/2019。 专利号 2681855在俄罗斯联邦知识产权服务公司的优先级,日期为2017年9月15日的优先级,用于确定硫酸盐离子形式的硫酸盐在土壤中的硫酸盐离子的形式,并从土壤中及其所需的设备确定。 在这些物体中确定硫酸盐离子的详细方法在书中发表在《开放媒体:“使用流动分析技术对土壤,植物和水生环境的农业化学和化学参数的确定”,由俄罗斯科学院学院院士编辑。RU.311866/2019。专利号2681855在俄罗斯联邦知识产权服务公司的优先级,日期为2017年9月15日的优先级,用于确定硫酸盐离子形式的硫酸盐在土壤中的硫酸盐离子的形式,并从土壤中及其所需的设备确定。在这些物体中确定硫酸盐离子的详细方法在书中发表在《开放媒体:“使用流动分析技术对土壤,植物和水生环境的农业化学和化学参数的确定”,由俄罗斯科学院学院院士编辑。
