药芯焊丝 .035 (0.9) 300 ipm WFS,130A,24V 3.4 气体保护焊丝 .035 (0.9) 600 ipm WFS,195A,30V 6.4 .045 (1.2) 300 ipm WFS,185A,28V 5.7 500 ipm WFS,255A,29V 8.1 .052 (1.3) 250 ipm WFS,210A,26V 6.0 450 ipm WFS,315A,29V 10.4 1/16 (1.6) 200 ipm WFS,255A,26V 7.3 350 ipm WFS,350A (2) , 29V 11.2 药芯焊丝 5/64 (2.0) 200 ipm WFS,280A,30V 10.1 自保护 300 ipm WFS,350A (2) ,32V 13.7 MIG 焊丝 .035 (0.9) 150 ipm WFS,120A,19V 2.5 250 ipm WFS,175A,22V 4.2 .045 (1.2) 125 ipm WFS,145A,19V 3.0 200 ipm WFS,200A,21V 4.6 焊条 (7018) 1/8 (3.2) 130A,27V 3.9 3/16 (4.8) 225A, 28V 6.9 焊条 (7024) 3/16 (4.8) 260A, 27V 7.7 焊条 (6010) 1/8 (3.2) 120A, 36V 4.7 注意:E6010 焊条需要更高的电压才能正确“搅动”。建议使用更高电压的电源。空气碳 1/4 (6.4) 350A (2), , 34V 13.1 电弧刨削 3/8 (9.5) 700A (2), , 34V 需要并联两个 Multi-Weld 350。26.2
基于对亚洲地区害虫状况、危害和现行做法的调查,制定了针对 B. dorsalis 的综合害虫管理 (IPM) 策略。调查结果表明,B. dorsalis 是一个主要问题,因为它在大多数参与国造成了严重损害。当前的 IPM 策略涉及多种控制策略,但往往过度依赖化学农药。基于行为的监测和控制措施由于易于使用和成本效益高而在该区域广泛使用,是 IPM 策略的关键组成部分。不育昆虫技术的应用虽然环保、可持续且与 IPM 兼容,但由于运营成本高、政府政策无效和社会接受度低而受到限制。公共知识和技术转让、培训和实践指导、相关利益相关者社区参与、接受和合作是可持续和成功针对 B. dorsalis 进行 IPM 的关键杠杆。更多旨在开发非化学控制策略和生物农药的举措和研究工作将优化现有的 IPM 策略。最后,应采取有效的检疫和植物检疫措施,提高边境生物安全,从而在全球气候变化的情况下拦截和遏制桔小实蝇扩大其现有地理边界的风险。
作者感谢Koning等。对冰岛预防模型(IPM)的批判性审查以及强调其优势。但是,我们希望回应他们的批评。首先,Koning等。得出的结论是:‘…仍然不清楚IPM的核心组成部分是什么。此外,Kristjansson等人的指导原则。(2020 a)不包括特定的干预组件……'(Koning等,2021,第3页)。指导原则(Kristjansson等,2020 A)和IPM的实施步骤(Kristjansson等,2020b)已详细描述;但是Koning等。似乎忽略了这些描述。他们认为IPM是一个干预程序,事实并非如此。类似于SAMHSA的战略预防框架(SAMHSA,2019年),IPM是一种过程结构,旨在促进长期社区授权和系统变化。IPM指向父母/护理人员,同伴小组,学校社区和休闲时间的四个优先领域内的潜在干预领域(例如Kristjansson等人,2020b,表2);但是,该模型没有规定特定的干预措施。第二,Koning等。声称监督 - 阶段的活动(包括代金券系统)和宵禁时间是模型的一部分。再次,这是不正确的。这些是在许多冰岛社区中颁布的特定企业,以响应基于实践的证据。(Kristjansson等,2020b);但是,这些都不是模型的规定组成部分。IPM采用严格的诊断评估系统来了解可能需要并应对不同级别的各种干预措施的全球和地方问题,包括国家法律的变化,地方规则,改善父母与学校的合作,资助地方预防专家,访问权限,访问权限以及增加正式休闲时间活动的机会等。
开发了同步辐射X射线(SR)分层照相和衍射方法,实现了对智能功率模块(IPM)内部退化行为的无损测量。通过SR分层照相跟踪IPM样品纳米颗粒Cu键合层的疲劳行为表明,大的聚集Cu簇引入了曲折裂纹和裂纹分支,从而降低了裂纹扩展速率,有望延长疲劳寿命。老化过程中的分层照相测量表明,纳米颗粒Cu的氧化是降低键合强度的主要退化模式,通过添加Bi和Sn可以改善键合强度。开发的旋转螺旋狭缝系统实现了IPM样品键合层中的空间分辨衍射测量。利用该技术可以获得IPM中应力和应变的内部分布图。SR分层成像与基于螺旋狭缝的衍射技术相结合将成为下一代IPM可靠性分析的有力工具。
气候变化、受侵染物质的国际交换增加以及害虫防治问题导致农民面临不可预测的害虫爆发。为了克服这些问题,需要一种可持续的害虫控制策略,即综合害虫管理 (IPM),以有效利用自然资源。IPM 是一种基于生态的控制管理策略,它考虑了所有因素(即天敌、经济阈值、植物易感性和繁殖因素、害虫生物学和气候条件)。在 IPM 中,专家人员是必不可少的要素。专家在系统设计、监测生态因素和决策机制中发挥作用。对于可持续的害虫管理,可以通过人工智能执行常规过程,例如监测生物和环境成分以及选择适当的时间和方法。在本章中,将解释人工智能在 IPM 中的应用以及有关人工智能中使用的算法、工具、方法的信息。
I. I Tratsuction下一代网络(包括5G及以后)将需要使用动态频谱共享和功率域多次访问来处理不断增加的移动数据流量[1]。为了使这一点成为可能,我们需要开发更准确的估计无线电环境的方法,包括信号强度和拟议服务区域中的频谱可用性。路径损失信息,指示由于不同访问点(AP)而提出的服务区域中信号质量的信息是室内无线电环境中网络部署计划的重要组成部分。因此,在部署AP之前获得预测的室内路径损耗图(IPM)或接收的信号强度(RSS)图是必不可少的,因为它可以准确估算建筑物内的信号强度和覆盖范围,并有助于APS的放置。此外,精确的IPM可以启用应用程序,例如精确的室内定位[2],认知无线网络[3]和移动机器人[4]。获得准确的IPM可以是耗时且劳动密集型的过程,因为它需要在拟议的服务区域中的许多参考点(RPS)进行测量以及测试AP的安装。为了解决此问题,已经提出了各种技术,例如基于参考点上进行的测量值预测IPM的插值方法,以及在不使用RPS的情况下预测IPM的生成方法。Racko等。[5]使用无线电图生成的线性和Delaunay插值技术。通过测量指定位置的RSS,他们能够通过使用两种不同的插值方法来计算完整的RSS。
摘要:当前的停车援助和监测系统合成鸟类视图(BEV)图像,以提高驱动程序的可见度。这些BEV图像是使用称为“逆透视图”(IPM)的流行透视转换创建的,该转换将其投射到FishEye摄像头捕获的环绕视图图像的像素上。然而,IPM在准确地表示高度和接缝的对象方面面临挑战,因为它依赖于刚性几何变换,因此将预计的环绕视图缝合在一起。为了解决这些局限性,我们提出了Bevgan,这是一种新型的几何形状引导的条件生成副本网络(CGAN)模型,将多尺度鉴别器与基于变形金刚的生成器相结合,该生成器利用Fisheye摄像机校准和注意力机械机制,以隐含地模拟该视图之间的几个几何形式的变换。实验结果表明,在图像保真度和质量方面,Bevgan的表现优于IPM和最先进的跨视图生成方法。与IPM相比,我们报告了 + 6的改进。在PSNR上的2 dB,MS-SSIM上的 + 170%在描绘停车场和驾驶场景的合成数据集上进行评估。此外,还通过零射推理证明了Bevgan在现实世界中的图像上的概括能力。
注意:联想不再提供带有M3 NMC的IPM软件,并且使用M3 NMC安装了任何7DD5 UPS单元。可以通过Eaton授权合作伙伴购买IPM许可证。要找到最近的Eaton合作伙伴,请连接到以下URL,填写表格,然后从国家下拉列表中选择您的国家。美国Web链接允许选择任何其他国家。
注意:联想不再提供带有 M3 NMC 的 IPM 软件以及任何预装了 M3 NMC 的 7DD5 UPS 装置。可以通过伊顿授权合作伙伴购买 IPM 许可证。要查找最近的伊顿合作伙伴,请连接到以下 URL,填写表格并从国家/地区下拉列表中选择您的国家/地区。美国网络链接允许选择任何其他国家/地区。
流程 我们与北美 IPM 研究所的分支机构 Sustainable Food Group 合作制定了这一目标。为了确定我们当前做法的基线,我们对一批供应商进行了调查,这些供应商约占 Kroger 新鲜农产品支出的 40%,调查内容涉及害虫管理、土壤健康、生物多样性和水资源保护等主题。我们的许多供应商已经采用了各种 IPM 做法,通过维护传粉者栖息地来支持生物多样性,并通过滴灌等做法节约用水。