图 2. 所提出的光控编码元件的设计和特性。a) 元原子编码元件的详细结构,在 SiO 2 基板上构建了 1 μm 厚的金方块和 1 μm 厚的 GeTe 方块图案。b) 编码元件两种状态的示意图:状态“0”表示 GeTe 的非晶态(绝缘态),状态“1”表示 GeTe 的晶体(导电)态。c) 和 d) 两种状态下编码元件的相应反射特性(c 幅度和 d 相位)。e) GeTe 层表面电阻随温度的变化(双探针测量),显示两种状态下的电特性相差六个数量级以上,并且冷却至室温时晶体状态具有非挥发性行为。 f) 有限元模拟 GeTe 层在具有不同能量密度的 35 纳秒长单脉冲紫外激光照射下的温度上升情况:单脉冲的通量为 90 mJ/cm 2,将使最初为非晶态的 GeTe 的温度升至其结晶温度 ( TC ) 以上,而随后的 190 mJ/cm 2 激光脉冲将使 GeTe 的温度升至其局部熔化温度 TM 以上,并将材料熔化淬火回非晶态。下图是拟议的 1 比特元原子的配置和示意图
当前,CAR-T细胞疗法被称为复发/难治性血液学恶性肿瘤患者的有效治疗。尽管如此,这种方法仍面临多个瓶颈,包括实体瘤的低效率,致命的不良反应,自体产物的高成本以及同种异体环境中GVHD的风险。作为潜在的替代方法,CAR-NK细胞疗法可以克服CAR-T细胞疗法的大部分局限性,并提供现成的,更安全,更负担得起的产品。尽管有希望通过CAR-NK细胞的临床前和临床研究发表的结果是有希望的,但必须解锁几个瓶颈,以最大程度地提高CAR-NK细胞疗法的有效性。这些瓶颈包括较低的体内持久性,较低的肿瘤部位的流动性,实体瘤中适度的效率以及对免疫抑制性肿瘤微环境的敏感性。近年来,基因操纵工具和策略的进步为克服了Car-NK细胞疗法的当前瓶颈奠定了基础。本评论将介绍现有的基因操纵工具,并讨论其优势和缺点。我们还将探讨这些工具如何增强CAR-NK Cell Therapy的安全性和效率。
各种病原体严重威胁到番茄的产量和质量。理解植物病原体相互作用的进步揭示了抗药性(R)和易感性(S)基因在确定植物免疫中的复杂作用。虽然R基因具有靶向的病原体耐药性,但它们通常容易受到病原体的进化。相反,S基因为通过靶向基因编辑发展广谱和耐用的阻力提供了有希望的途径。基于CRISPR/CAS的技术的最新突破已经彻底改变了对植物基因组的操纵,从而实现了S基因的精确修饰,以增强番茄疾病的耐药性,而不会损害生长或质量。然而,由于复杂的植物病原体相互作用和当前的技术局限性,该技术的全部潜力的利用是具有挑战性的。本评论强调了使用基因编辑工具剖析和设计番茄基因以提高免疫力的关键进展。我们讨论了S基因如何影响病原体的进入,免疫抑制和营养获取,以及其目标编辑如何赋予细菌,真菌和病毒病原体的抗性。此外,我们解决了与生长防御权衡取舍相关的挑战,并提出了诸如荷尔蒙途径调制和精确的监管编辑之类的策略,以克服这些限制。这篇综述强调了基于CRISPR的方法来改变番茄育种的潜力,为在全球粮食安全挑战升级的情况下,为可持续生产抗病品种铺平了道路。
引用:Annant Maheshwari。等。“使用增强和卷积神经网络检测图像操纵检测”。Medicon工程主题8.2(2025):49-56。
我们在现象学上制定并在实验上观察到通过人工倾斜多层(ATML)中的热电流重新定位增强了绝热的热电转换。通过交替堆叠具有不同导电性的两种材料,并相对于纵向温度梯度旋转其多层结构,诱导导热性张量中的非分子分量。这种非对角线热传导(ODTC)在绝热条件下产生有限的横向温度梯度,并在绝热条件下产生了seebeck效应诱导的热电器,该温度是由异热横向热电器上置于由外diagonal驱动的热量热电器上的。在这项研究中,我们计算和观察包括热电CO 2 MNGA Heusler合金和BI 2-A SB A TE 3化合物的ATML中的二维温度分布以及所得的横向热电器。通过将倾斜角从0°更改为90°,横向温度梯度显然出现在中间角度,横向热电图在CO 2 MNGA/BI 0.2 MNGA/BI 0.2 SB 1.8 TE 3 te 3 te 3 te的ATML中以45°的倾斜度为45°的ATML,均来自45°的贡献。这种从ODTC得出的混合动作导致横向热电转化率最大降低效率的显着差异从等热极限的3.1%到绝热极限的8.1%。
稀释,超速原子气体为研究集体量子性能提供了一个绝佳的平台,因为它们的可操作性和相互作用的相对简单特征。在这种情况下,Bose-Einstein冷凝物的二元不混合混合物显示出异国情调的激发,例如量子巨大的涡流(即涡流的核心由少数群体填充)。量子涡旋不仅具有超流量背景下的基本利益,而且还具有宇宙学,超导性,非线性光学的类比,并且可能与量子霍尔效应有关。涡流质量的出现是混合物的典型特征,但也可能是由于有限的温度效应或杂质引起的,并导致令人着迷的现象。在论文中,我们着重于两种不同的肺泡物种混合物中巨大涡旋的二维动力学,具有接触相互作用和硬壁圆形电位。我们通过变异的拉格朗日方法得出了n v巨大涡流的点状模型,并将其应用于偶联对大规模涡流动力学的效果的研究。在此基础上,在不平衡的涡流质量的情况下,我们发现并表征了两涡轨轨迹的一些显着解决方案。我们根据描述混合物的(平均场)Gross-Pitaevskii方程来验证我们的分析结果。我们对不平衡涡旋对的表征导致了引人入胜的动力学状态的识别,从而使微观涡流质量允许其位置和预动力频率进行间接度量。随后,我们通过考虑填充成分的量子隧穿来扩展涡流对的研究以包括时间依赖性涡流质量。通过数值模拟,我们发现该系统具有宏观动力学,导致了骨化约瑟夫森连接(BJJ)。bjjs的动力学表现出具有超导性约瑟夫森连接的类比,并观察到了光势中相干的玻色气体。在BJJS中,中性原子的相互作用特征显示出新的效果,例如宏观量子自我捕获。值得注意的是,我们发现我们的两涡体系统显示出表征BJJ的所有(非线性)现象,并且随着时间的流逝,它是稳健且稳定的。我们还得出了BJJ的相应Bose-Hubbard模型及其均值近似,从而为模型的系数提供了一些分析表达式,这是重要系统参数的函数。我们的工作为令人兴奋的前景开辟了道路,例如研究涡旋项链和格子中填充成分的隧穿,杂物和不对称的效果是由潜在的不同涡流核心大小,多重量化量化涡流的包含以及对Fermi超级氟化物扩展的范围。
基于mRNA技术的生理学家和临床医生之间的跨学科翻译研究已经开放,并应对多种疾病的治疗观点开放,其中许多迄今为止很难治疗或根本无法治疗。在此概述中,为治疗完全不同的神经系统和神经性侵蚀性疾病类别提供了各种用于应用mRNA技术的选择,例如代谢性和神经退行性疾病,感染性疾病和肿瘤,这些疾病,感染性疾病和肿瘤进行了一些当前选定的临床试验和实验方法的例子。mRNA技术允许开发量身定制的个性化疗法,该疗法甚至可以根据mRNA组装说明的生理配方来产生疗法本身。
自然和我们的日常生活都被微塑料和纳米塑料所包围。他们的存在对环境和生物的健康有潜在的风险。尽管塑料在工业领域的优势(例如低成本和多功能性)最初是发明的,但它们的降解会导致不容易监测或检测的小颗粒,并且可以渗透到体内,而在本质上可能会持续数百年。他们的检测,识别和分析对于确定所有人的危险水平至关重要。全球塑料产量的兴起导致环境中微塑料和纳米塑料的患病率不断增加。缺乏标准化的处理方法使管理环境影响的努力变得复杂。目前的状态以及未来几年的预测似乎黯淡,促使科学家和立法者加强了开发和实施更好的解决方案的努力。
全球气候变化对陆地生态系统功能影响巨大,降水模式的波动范围从极端干旱到不适应这些条件的生态系统中的高强度降雨事件。同时,生态系统功能受到生物多样性迅速丧失的威胁(Tilman 等人,2012 年)。气候变化和生物多样性对生态系统功能产生复合影响的可能性凸显了同时考虑这两个因素的必要性。通过更好地了解生物多样性和气候变化对生态系统过程的潜在机制介质,可以更好地预测此类影响。大量研究表明土壤微生物在生态系统功能( Austin 等人, 2014 ; Dubey 等人, 2019 ; Podzikowski 等人, 2024 )和生物多样性维持( Van Der Heijden 等人, 2008 ; Bever 等人, 2015 )中发挥着关键作用,因此很可能成为调节生物多样性和气候变化对生态系统功能的联合影响的候选者。因此,了解土壤微生物组(包括功能不同的微生物群)如何应对气候扰动以及植物多样性和组成的变化至关重要。土壤微生物组已被证明对降水变化高度敏感( Barnard 等人, 2013 ; Engelhardt 等人, 2018 )。研究表明,细菌和真菌(包括真菌病原体(Coulhoun,1973 年;Talley 等人,2002 年;Delavaux 等人,2021 年 a)和丛枝菌根 (AM) 真菌(House and Bever,2018 年)和卵菌(Van West 等人,2003 年;Delavaux 等人,2021 年 a))的丰富度、丰度和组成会随着降水量的变化而变化。虽然细菌和真菌都对降水量的增加作出反应,但研究发现真菌比细菌更能耐受干旱条件(Barnard 等人,2013 年;Engelhardt 等人,2018 年)。同时,一些真菌病原体(例如锈病,Froelich 和 Snow,1986;根腐病 Wyka 等人,2018;Bevacqua 等人,2023)和腐生菌(Delavaux 等人,2021a)被发现在较潮湿的条件下繁殖。此外,陆生卵菌通常是植物病原体,它们在较潮湿的条件下多样性增加(Delavaux 等人,2021a),这可能是它们依赖水的生命周期所预期的(Thines,2018)。因此,这些对降水的不同反应对于微生物组对植物群落的反馈具有重大影响,例如在干旱条件下对 AM 真菌伙伴的依赖增加( Stahl 和 Smith,1984 ; Schultz 等人,2001 ; Auge,2001 ; Marulanda 等人,2003 )以及在潮湿条件下病原体的影响可能更大。因此,确定功能和分类学上不同的土壤微生物群对重大降水变化的相对敏感性,对于理解微生物组驱动的功能如何随着干旱期延长和降雨期加剧而发生变化至关重要。迄今为止,还没有研究测量过微生物功能群对降水实验性改变的广度。土壤微生物组对植物群落组成也高度敏感。植物物种丰富度的提高可以增加微生物多样性(Lamb 等人,2011 年;Burrill 等人,2023 年),因为植物物种的微生物组通常因根系结构(Saleem 等人,2018 年)、根系
仿真是培训深度学习模型的越来越多的数据源。在机器人技术中,模拟已成功地用于学习诸如导航,步行,飞行或操纵之类的行为。模拟中数据生成的价值主要取决于场景布局的多样性和规模。现有数据集(Ehsani等,2021; Garcia-Garcia等,2019; Mo等,2019; Nasiriany等,2024)在这方面受到限制,而纯粹的生成模型仍然缺乏在物理模拟中可以使用的场景(HOLLEIN及2023 al。el。,et e e eT el。 2024)。其他程序管道要么专注于学习视觉模型(Denninger等,2023; Greff等,2022; Raistrick等,2023),要解决特定的用例,例如自主驾驶(Fremont等,2020; Hess等; Hess等,2021),或者很难扩展和自定义的平台(它们是一个特定的平台(它们是一个与众不同的平台(DET)(DEIT)(DEIT)(DEIT)(DEIT)(DEIT)(DETIT)(DETER)(DETER)。 )。使用scene_synthesizer我们提出