2 阿米蒂大学北方邦阿米蒂法学院,勒克瑙校区 摘要:本研究论文探讨了人工智能 (AI) 对数字环境中盗版的影响。它研究了盗版在数字时代的增长方式,以及人工智能如何帮助保护知识产权并为盗版者提供新策略。该研究涵盖了人工智能在内容盗版中的应用,包括文本和音频的创作、深度伪造电影和假冒商品。此外,它还研究了人工智能辅助盗版技术,包括动态内容匹配、自动内容分发和抓取以及内容货币化。本文讨论了人工智能对知识产权的影响,以及版权侵权、执法挑战、质量和声誉损害、收入来源损失以及对创新的影响等问题。它继续讨论人工智能在版权执法和识别方面的进一步应用,例如内容指纹识别、自动删除请求、模式识别、内容扫描和匹配、适应性机器学习和实时监控。本研究探讨了隐私问题,包括数据收集和监控、误报、用户分析和缺乏透明度,这些问题与内容盗版中的人工智能有关。研究还讨论了合理使用和版权侵权问题,以及阻止人工智能驱动的盗版所涉及的技术和法律障碍。本研究包括人工智能驱动的推荐和流媒体服务、欺骗和深度伪造电影以及 DRM 解决方案的案例研究。对相关盗版案例法的审查到此结束。关键词:人工智能、人工智能、数字盗版、知识产权、版权、内容扫描、模式识别、自动删除请求、深度伪造视频、文本生成、音频生成、假冒产品、货币化、动态内容匹配等。21 世纪的数字环境已经发展成为一个庞大而复杂的领域,从根本上改变了我们共享、消费和保护创意信息的方式。在当今的数字时代,盗版的重要性急剧上升,给消费者、内容制作者和知识产权所有者带来了前所未有的困难。由于数字平台的广泛使用以及材料可以被非法复制和分发的简单性,盗版是一个不断变化的持续担忧。人工智能 (AI) 和盗版这一新兴领域有能力改变盗版领域。凭借其在自动化、机器学习和数据分析方面的惊人能力,人工智能 (AI) 有可能在持续打击盗版的战争中成为祸害和福音。1 它可以用于保护知识产权和执行版权,但它也可能使海盗能够制定更难识别和阻止的新策略。
极性子是轻质的准颗粒,可控制纳米级量子材料的光学响应,从而实现片上的通信和局部感应。在这里,我们报告了封装在六角硼(HBN)中的Magne offer-Nedral石墨烯中的Landau-Phonon Polariton(LPP)。这些准颗粒从石墨烯中的狄拉克磁饰模式与HBN中的双曲线声子极化模式的相互作用中脱颖而出。使用红外磁纳米镜检查,我们揭示了在量化的磁场处的真实空间中完全停止LPP传播的能力,违反了常规的光学选择规则。基于LPP的纳米镜检查还分别说明了两个基本多体现象:费米速度的恢复速度和依赖于场的磁性磁性。我们的结果突出了磁性调谐的狄拉克异质结构对精确的纳米级控制的潜力和光 - 物质相互作用的传感。
pn 结中的二极管效应在现代微电子学中起着重要作用。由于电子(n)和空穴(p)掺杂区之间的反演对称性破缺,电子传输是非互易的,即电流只能朝一个方向流动。这种非互易性质已广泛应用于晶体管、发光二极管、太阳能电池等电子设备中。最近,类似的二极管效应在超导系统中引起了极大的兴趣 [1-66]。与 pn 结中的二极管效应一样,超导二极管效应 (SDE),或者具体来说是约瑟夫森结 (JJ) 中的约瑟夫森二极管效应 (JDE),有望找到重要应用,如无源片上回转器和循环器 [66]。这类设备在量子计算应用中将特别有影响力。此外,SDE/JDE 可用作研究新型超导特性(如有限动量库珀对)的替代方法 [2, 10]。在典型的 JJ 或超导量子干涉装置(SQUID)中,IV 曲线在装置处于正常状态的高电流范围内呈线性,如图 1(d)所示。电压 V DC 在所谓的再捕获电流 I + r(对于电流向下扫描)处突然降至零,并在很大的电流范围内保持在零,直到达到开关电流 − I − c。本文中,我们将该开关电流视为 JJ 的临界电流(I c ),并在本文中始终使用临界电流这一术语。超过 − I − c 后,IV 曲线变为线性,装置再次进入正常状态。对于电流向上扫描曲线,可以观察到 IV 曲线的类似形状,并标记出相应的 − I − r 和 I + c 的位置。一般而言,只要存在时间反演对称性 (TRS) 或反演对称性,I + c = I − c 就与电流扫描方向无关。然而,当两种对称性都被破坏时,临界电流会根据电流扫描的方向显示不同的值,这种现象称为 JDE [ 1 , 2 ]。在非中心对称超导系统或非对称 SQUID 等器件结构中,反演对称性会被破坏
ICTP 主任 Atish Dabholkar 谈论量子纠缠以及 ICTP 的工作 ICTP 主任 Atish Dabholkar 谈论量子纠缠以及 ICTP 的工作
摘要:在本文中,我们在修改后的重力上下文中介绍了狄拉克出生的标量标量场的动态系统分析。我们考虑了修饰重力的多项式形式,使用了两种不同类型的标量,多项式和指数,并找到了一个封闭的方程式动力学系统。我们分析了这种系统的固定点,并评估了该模型中延迟加速度减速的条件。我们注意到这两个模型的相似性,并表明我们的结果与先前关于爱因斯坦重力的研究一致。我们还通过绘制EOS(ω),能量密度(ω)和减速参数(Q)W.R.T。来研究了模型的现象学意义。到e-folt时间,并与现在的值进行比较。我们通过观察动态系统分析在修饰的重力方面有何不同,并介绍我们研究的未来范围,从而结束了本文。
实验表明,多种材料,包括MGB 2,基于铁的超导体和单层NBSE 2,是多型超导体。在多个频段中的超导配对可能会导致单个频段(包括Leggett模式)中没有的现象。leggett模式是在不同带中形成的超导冷凝物相之间的相对相的集体周期性振荡。对Leggett模式的实验观察很具有挑战性,因为多播超导体很少见,并且因为这些模式描述了频段之间的电荷波动,因此很难直接探测。此外,Leggett模式的激发能量通常比超导间隙大,因此它们通过放松过程中的降低过程大大阻尼到Quasiparticle Continuum中。在这里,我们表明可以在A.C中检测到Leggett模式及其频率。驱动的超导量子干扰装置。然后,我们使用结果来分析这种量子设备的测量值,该量子设备基于Dirac Semimimetal CD 3为2,其中通过与超导AL的接近度诱导了超导性。这些结果表明了Leggett模式的理论上预测的签名,因此我们得出结论,CD 3的两个波段超导状态中存在leggett模式为2。
我们报告了在特殊设计的二维超材料中观察到由Terahertz Laser辐射激发的圆形棘轮效应,该二维超材料由沉积在带有三角形动物阵列的几层石墨烯栅极上的石墨烯单层组成。我们表明,具有空间不对称的定期驱动的迪拉克费米恩系统将A.C.转换为A.C.动力变成华盛顿电流,当辐射螺旋被切换时,其方向会逆转。室温和2.54 THz的辐射频率证明了圆形棘轮效应。表明,棘轮电流幅度可以通过图案和均匀的后门电压来控制。根据棘轮电流形成的电子和等离子机理的开发微观理论,对结果进行了分析。
因此,我们将在石墨烯中做量子厅的效应,这将是降级水平的推导,此后我们将在不明确计算它们的情况下谈论电导率,但随后您知道可以使用Kubo公式来计算电导率。在这种情况下,有一件很重要的事情是,当您知道存在通过系统螺纹的通量时,高原是出现的,并且磁通必须与磁通量量子匹配,而通量量子具有一个值,我们用这种值表示了几次,这是一个值,这是一个值,即在10到10到10到10的电源15 Weber。因此,这种磁通必须匹配外部场以穿过石墨烯或蜂窝晶格。现在,这个蜂窝晶格具有晶格常数的这一侧面,就像2.46 Angstrom,如果一个人的背面计算,则该单元单元的面积像一个蜂窝结构一样,就像3乘2 A平方的根,而这可能是0.05纳米平方0.051 nanmor Square 0.051 nannonose Square。因此,如果我必须将磁场与该区域相乘才能找到通量,那么磁场必须是几公斤特斯拉的磁场,甚至是更多,这是一个很大的磁场。因此,这就是为什么石墨烯,如果您必须在石墨烯中看到量子霍尔的效应,则磁场必须比我们先前谈论过的2D电子气或砷化油壳结构所看到的大。好吧,我们暂时忽略了这一部分,假装一切都与2D电子气体中的量子厅效应相似,这是机械动量使您知道该向量电位重新构成的动量,而且在这里也发生了,除了我们现在具有晶格结构,不仅是晶格结构,而且晶格结构有两个原子。
引言结直肠癌(CRC)统称是指在直肠上皮或从息肉中的结肠上皮形成中发展的恶性肿瘤。1 CRC是加拿大第三大流行的癌症2,是癌症相关死亡的第二大原因(占所有癌症死亡的11%)。3据估计,在所有年龄段的男女中,加拿大CRC的10年患病率为10年,2018年为每100,000人343.5例(或总共97,755例)。4转移性结直肠癌(MCRC)表明,该癌症已扩散到原发性肿瘤部位以外的人体(即IV期疾病),其中最常见的转移位置是肝脏,肺,腹膜,腹膜和远处的淋巴结。5诊断时CRC的阶段与存活密切相关。6例早期CRC患者通常是无症状的,而患有晚期疾病的患者会根据转移的位置(包括右上方象限,腹部延伸,早期饱腹感,上饱和性症状,上lave骨腺病和周期性结节)而变化不同。7右侧(近端)肿瘤很少存在